Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision
  • master
  • 0.1.0
  • 0.1.1
3 results

Target

Select target project
  • oss/utilities/requirements-manager
1 result
Select Git revision
  • master
  • 0.1.0
  • 0.1.1
3 results
Show changes
Showing
with 7088 additions and 0 deletions
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto"
"encoding/binary"
"io"
"strconv"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
)
// OnePassSignature represents a one-pass signature packet. See RFC 4880,
// section 5.4.
type OnePassSignature struct {
Version int
SigType SignatureType
Hash crypto.Hash
PubKeyAlgo PublicKeyAlgorithm
KeyId uint64
IsLast bool
Salt []byte // v6 only
KeyFingerprint []byte // v6 only
}
func (ops *OnePassSignature) parse(r io.Reader) (err error) {
var buf [8]byte
// Read: version | signature type | hash algorithm | public-key algorithm
_, err = readFull(r, buf[:4])
if err != nil {
return
}
if buf[0] != 3 && buf[0] != 6 {
return errors.UnsupportedError("one-pass-signature packet version " + strconv.Itoa(int(buf[0])))
}
ops.Version = int(buf[0])
var ok bool
ops.Hash, ok = algorithm.HashIdToHashWithSha1(buf[2])
if !ok {
return errors.UnsupportedError("hash function: " + strconv.Itoa(int(buf[2])))
}
ops.SigType = SignatureType(buf[1])
ops.PubKeyAlgo = PublicKeyAlgorithm(buf[3])
if ops.Version == 6 {
// Only for v6, a variable-length field containing the salt
_, err = readFull(r, buf[:1])
if err != nil {
return
}
saltLength := int(buf[0])
var expectedSaltLength int
expectedSaltLength, err = SaltLengthForHash(ops.Hash)
if err != nil {
return
}
if saltLength != expectedSaltLength {
err = errors.StructuralError("unexpected salt size for the given hash algorithm")
return
}
salt := make([]byte, expectedSaltLength)
_, err = readFull(r, salt)
if err != nil {
return
}
ops.Salt = salt
// Only for v6 packets, 32 octets of the fingerprint of the signing key.
fingerprint := make([]byte, 32)
_, err = readFull(r, fingerprint)
if err != nil {
return
}
ops.KeyFingerprint = fingerprint
ops.KeyId = binary.BigEndian.Uint64(ops.KeyFingerprint[:8])
} else {
_, err = readFull(r, buf[:8])
if err != nil {
return
}
ops.KeyId = binary.BigEndian.Uint64(buf[:8])
}
_, err = readFull(r, buf[:1])
if err != nil {
return
}
ops.IsLast = buf[0] != 0
return
}
// Serialize marshals the given OnePassSignature to w.
func (ops *OnePassSignature) Serialize(w io.Writer) error {
//v3 length 1+1+1+1+8+1 =
packetLength := 13
if ops.Version == 6 {
// v6 length 1+1+1+1+1+len(salt)+32+1 =
packetLength = 38 + len(ops.Salt)
}
if err := serializeHeader(w, packetTypeOnePassSignature, packetLength); err != nil {
return err
}
var buf [8]byte
buf[0] = byte(ops.Version)
buf[1] = uint8(ops.SigType)
var ok bool
buf[2], ok = algorithm.HashToHashIdWithSha1(ops.Hash)
if !ok {
return errors.UnsupportedError("hash type: " + strconv.Itoa(int(ops.Hash)))
}
buf[3] = uint8(ops.PubKeyAlgo)
_, err := w.Write(buf[:4])
if err != nil {
return err
}
if ops.Version == 6 {
// write salt for v6 signatures
_, err := w.Write([]byte{uint8(len(ops.Salt))})
if err != nil {
return err
}
_, err = w.Write(ops.Salt)
if err != nil {
return err
}
// write fingerprint v6 signatures
_, err = w.Write(ops.KeyFingerprint)
if err != nil {
return err
}
} else {
binary.BigEndian.PutUint64(buf[:8], ops.KeyId)
_, err := w.Write(buf[:8])
if err != nil {
return err
}
}
isLast := []byte{byte(0)}
if ops.IsLast {
isLast[0] = 1
}
_, err = w.Write(isLast)
return err
}
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"io"
"github.com/ProtonMail/go-crypto/openpgp/errors"
)
// OpaquePacket represents an OpenPGP packet as raw, unparsed data. This is
// useful for splitting and storing the original packet contents separately,
// handling unsupported packet types or accessing parts of the packet not yet
// implemented by this package.
type OpaquePacket struct {
// Packet type
Tag uint8
// Reason why the packet was parsed opaquely
Reason error
// Binary contents of the packet data
Contents []byte
}
func (op *OpaquePacket) parse(r io.Reader) (err error) {
op.Contents, err = io.ReadAll(r)
return
}
// Serialize marshals the packet to a writer in its original form, including
// the packet header.
func (op *OpaquePacket) Serialize(w io.Writer) (err error) {
err = serializeHeader(w, packetType(op.Tag), len(op.Contents))
if err == nil {
_, err = w.Write(op.Contents)
}
return
}
// Parse attempts to parse the opaque contents into a structure supported by
// this package. If the packet is not known then the result will be another
// OpaquePacket.
func (op *OpaquePacket) Parse() (p Packet, err error) {
hdr := bytes.NewBuffer(nil)
err = serializeHeader(hdr, packetType(op.Tag), len(op.Contents))
if err != nil {
op.Reason = err
return op, err
}
p, err = Read(io.MultiReader(hdr, bytes.NewBuffer(op.Contents)))
if err != nil {
op.Reason = err
p = op
}
return
}
// OpaqueReader reads OpaquePackets from an io.Reader.
type OpaqueReader struct {
r io.Reader
}
func NewOpaqueReader(r io.Reader) *OpaqueReader {
return &OpaqueReader{r: r}
}
// Read the next OpaquePacket.
func (or *OpaqueReader) Next() (op *OpaquePacket, err error) {
tag, _, contents, err := readHeader(or.r)
if err != nil {
return
}
op = &OpaquePacket{Tag: uint8(tag), Reason: err}
err = op.parse(contents)
if err != nil {
consumeAll(contents)
}
return
}
// OpaqueSubpacket represents an unparsed OpenPGP subpacket,
// as found in signature and user attribute packets.
type OpaqueSubpacket struct {
SubType uint8
EncodedLength []byte // Store the original encoded length for signature verifications.
Contents []byte
}
// OpaqueSubpackets extracts opaque, unparsed OpenPGP subpackets from
// their byte representation.
func OpaqueSubpackets(contents []byte) (result []*OpaqueSubpacket, err error) {
var (
subHeaderLen int
subPacket *OpaqueSubpacket
)
for len(contents) > 0 {
subHeaderLen, subPacket, err = nextSubpacket(contents)
if err != nil {
break
}
result = append(result, subPacket)
contents = contents[subHeaderLen+len(subPacket.Contents):]
}
return
}
func nextSubpacket(contents []byte) (subHeaderLen int, subPacket *OpaqueSubpacket, err error) {
// RFC 4880, section 5.2.3.1
var subLen uint32
var encodedLength []byte
if len(contents) < 1 {
goto Truncated
}
subPacket = &OpaqueSubpacket{}
switch {
case contents[0] < 192:
subHeaderLen = 2 // 1 length byte, 1 subtype byte
if len(contents) < subHeaderLen {
goto Truncated
}
encodedLength = contents[0:1]
subLen = uint32(contents[0])
contents = contents[1:]
case contents[0] < 255:
subHeaderLen = 3 // 2 length bytes, 1 subtype
if len(contents) < subHeaderLen {
goto Truncated
}
encodedLength = contents[0:2]
subLen = uint32(contents[0]-192)<<8 + uint32(contents[1]) + 192
contents = contents[2:]
default:
subHeaderLen = 6 // 5 length bytes, 1 subtype
if len(contents) < subHeaderLen {
goto Truncated
}
encodedLength = contents[0:5]
subLen = uint32(contents[1])<<24 |
uint32(contents[2])<<16 |
uint32(contents[3])<<8 |
uint32(contents[4])
contents = contents[5:]
}
if subLen > uint32(len(contents)) || subLen == 0 {
goto Truncated
}
subPacket.SubType = contents[0]
subPacket.EncodedLength = encodedLength
subPacket.Contents = contents[1:subLen]
return
Truncated:
err = errors.StructuralError("subpacket truncated")
return
}
func (osp *OpaqueSubpacket) Serialize(w io.Writer) (err error) {
buf := make([]byte, 6)
copy(buf, osp.EncodedLength)
n := len(osp.EncodedLength)
buf[n] = osp.SubType
if _, err = w.Write(buf[:n+1]); err != nil {
return
}
_, err = w.Write(osp.Contents)
return
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package packet implements parsing and serialization of OpenPGP packets, as
// specified in RFC 4880.
package packet // import "github.com/ProtonMail/go-crypto/openpgp/packet"
import (
"bytes"
"crypto/cipher"
"crypto/rsa"
"io"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
)
// readFull is the same as io.ReadFull except that reading zero bytes returns
// ErrUnexpectedEOF rather than EOF.
func readFull(r io.Reader, buf []byte) (n int, err error) {
n, err = io.ReadFull(r, buf)
if err == io.EOF {
err = io.ErrUnexpectedEOF
}
return
}
// readLength reads an OpenPGP length from r. See RFC 4880, section 4.2.2.
func readLength(r io.Reader) (length int64, isPartial bool, err error) {
var buf [4]byte
_, err = readFull(r, buf[:1])
if err != nil {
return
}
switch {
case buf[0] < 192:
length = int64(buf[0])
case buf[0] < 224:
length = int64(buf[0]-192) << 8
_, err = readFull(r, buf[0:1])
if err != nil {
return
}
length += int64(buf[0]) + 192
case buf[0] < 255:
length = int64(1) << (buf[0] & 0x1f)
isPartial = true
default:
_, err = readFull(r, buf[0:4])
if err != nil {
return
}
length = int64(buf[0])<<24 |
int64(buf[1])<<16 |
int64(buf[2])<<8 |
int64(buf[3])
}
return
}
// partialLengthReader wraps an io.Reader and handles OpenPGP partial lengths.
// The continuation lengths are parsed and removed from the stream and EOF is
// returned at the end of the packet. See RFC 4880, section 4.2.2.4.
type partialLengthReader struct {
r io.Reader
remaining int64
isPartial bool
}
func (r *partialLengthReader) Read(p []byte) (n int, err error) {
for r.remaining == 0 {
if !r.isPartial {
return 0, io.EOF
}
r.remaining, r.isPartial, err = readLength(r.r)
if err != nil {
return 0, err
}
}
toRead := int64(len(p))
if toRead > r.remaining {
toRead = r.remaining
}
n, err = r.r.Read(p[:int(toRead)])
r.remaining -= int64(n)
if n < int(toRead) && err == io.EOF {
err = io.ErrUnexpectedEOF
}
return
}
// partialLengthWriter writes a stream of data using OpenPGP partial lengths.
// See RFC 4880, section 4.2.2.4.
type partialLengthWriter struct {
w io.WriteCloser
buf bytes.Buffer
lengthByte [1]byte
}
func (w *partialLengthWriter) Write(p []byte) (n int, err error) {
bufLen := w.buf.Len()
if bufLen > 512 {
for power := uint(30); ; power-- {
l := 1 << power
if bufLen >= l {
w.lengthByte[0] = 224 + uint8(power)
_, err = w.w.Write(w.lengthByte[:])
if err != nil {
return
}
var m int
m, err = w.w.Write(w.buf.Next(l))
if err != nil {
return
}
if m != l {
return 0, io.ErrShortWrite
}
break
}
}
}
return w.buf.Write(p)
}
func (w *partialLengthWriter) Close() (err error) {
len := w.buf.Len()
err = serializeLength(w.w, len)
if err != nil {
return err
}
_, err = w.buf.WriteTo(w.w)
if err != nil {
return err
}
return w.w.Close()
}
// A spanReader is an io.LimitReader, but it returns ErrUnexpectedEOF if the
// underlying Reader returns EOF before the limit has been reached.
type spanReader struct {
r io.Reader
n int64
}
func (l *spanReader) Read(p []byte) (n int, err error) {
if l.n <= 0 {
return 0, io.EOF
}
if int64(len(p)) > l.n {
p = p[0:l.n]
}
n, err = l.r.Read(p)
l.n -= int64(n)
if l.n > 0 && err == io.EOF {
err = io.ErrUnexpectedEOF
}
return
}
// readHeader parses a packet header and returns an io.Reader which will return
// the contents of the packet. See RFC 4880, section 4.2.
func readHeader(r io.Reader) (tag packetType, length int64, contents io.Reader, err error) {
var buf [4]byte
_, err = io.ReadFull(r, buf[:1])
if err != nil {
return
}
if buf[0]&0x80 == 0 {
err = errors.StructuralError("tag byte does not have MSB set")
return
}
if buf[0]&0x40 == 0 {
// Old format packet
tag = packetType((buf[0] & 0x3f) >> 2)
lengthType := buf[0] & 3
if lengthType == 3 {
length = -1
contents = r
return
}
lengthBytes := 1 << lengthType
_, err = readFull(r, buf[0:lengthBytes])
if err != nil {
return
}
for i := 0; i < lengthBytes; i++ {
length <<= 8
length |= int64(buf[i])
}
contents = &spanReader{r, length}
return
}
// New format packet
tag = packetType(buf[0] & 0x3f)
length, isPartial, err := readLength(r)
if err != nil {
return
}
if isPartial {
contents = &partialLengthReader{
remaining: length,
isPartial: true,
r: r,
}
length = -1
} else {
contents = &spanReader{r, length}
}
return
}
// serializeHeader writes an OpenPGP packet header to w. See RFC 4880, section
// 4.2.
func serializeHeader(w io.Writer, ptype packetType, length int) (err error) {
err = serializeType(w, ptype)
if err != nil {
return
}
return serializeLength(w, length)
}
// serializeType writes an OpenPGP packet type to w. See RFC 4880, section
// 4.2.
func serializeType(w io.Writer, ptype packetType) (err error) {
var buf [1]byte
buf[0] = 0x80 | 0x40 | byte(ptype)
_, err = w.Write(buf[:])
return
}
// serializeLength writes an OpenPGP packet length to w. See RFC 4880, section
// 4.2.2.
func serializeLength(w io.Writer, length int) (err error) {
var buf [5]byte
var n int
if length < 192 {
buf[0] = byte(length)
n = 1
} else if length < 8384 {
length -= 192
buf[0] = 192 + byte(length>>8)
buf[1] = byte(length)
n = 2
} else {
buf[0] = 255
buf[1] = byte(length >> 24)
buf[2] = byte(length >> 16)
buf[3] = byte(length >> 8)
buf[4] = byte(length)
n = 5
}
_, err = w.Write(buf[:n])
return
}
// serializeStreamHeader writes an OpenPGP packet header to w where the
// length of the packet is unknown. It returns a io.WriteCloser which can be
// used to write the contents of the packet. See RFC 4880, section 4.2.
func serializeStreamHeader(w io.WriteCloser, ptype packetType) (out io.WriteCloser, err error) {
err = serializeType(w, ptype)
if err != nil {
return
}
out = &partialLengthWriter{w: w}
return
}
// Packet represents an OpenPGP packet. Users are expected to try casting
// instances of this interface to specific packet types.
type Packet interface {
parse(io.Reader) error
}
// consumeAll reads from the given Reader until error, returning the number of
// bytes read.
func consumeAll(r io.Reader) (n int64, err error) {
var m int
var buf [1024]byte
for {
m, err = r.Read(buf[:])
n += int64(m)
if err == io.EOF {
err = nil
return
}
if err != nil {
return
}
}
}
// packetType represents the numeric ids of the different OpenPGP packet types. See
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-2
type packetType uint8
const (
packetTypeEncryptedKey packetType = 1
packetTypeSignature packetType = 2
packetTypeSymmetricKeyEncrypted packetType = 3
packetTypeOnePassSignature packetType = 4
packetTypePrivateKey packetType = 5
packetTypePublicKey packetType = 6
packetTypePrivateSubkey packetType = 7
packetTypeCompressed packetType = 8
packetTypeSymmetricallyEncrypted packetType = 9
packetTypeMarker packetType = 10
packetTypeLiteralData packetType = 11
packetTypeTrust packetType = 12
packetTypeUserId packetType = 13
packetTypePublicSubkey packetType = 14
packetTypeUserAttribute packetType = 17
packetTypeSymmetricallyEncryptedIntegrityProtected packetType = 18
packetTypeAEADEncrypted packetType = 20
packetPadding packetType = 21
)
// EncryptedDataPacket holds encrypted data. It is currently implemented by
// SymmetricallyEncrypted and AEADEncrypted.
type EncryptedDataPacket interface {
Decrypt(CipherFunction, []byte) (io.ReadCloser, error)
}
// Read reads a single OpenPGP packet from the given io.Reader. If there is an
// error parsing a packet, the whole packet is consumed from the input.
func Read(r io.Reader) (p Packet, err error) {
tag, len, contents, err := readHeader(r)
if err != nil {
return
}
switch tag {
case packetTypeEncryptedKey:
p = new(EncryptedKey)
case packetTypeSignature:
p = new(Signature)
case packetTypeSymmetricKeyEncrypted:
p = new(SymmetricKeyEncrypted)
case packetTypeOnePassSignature:
p = new(OnePassSignature)
case packetTypePrivateKey, packetTypePrivateSubkey:
pk := new(PrivateKey)
if tag == packetTypePrivateSubkey {
pk.IsSubkey = true
}
p = pk
case packetTypePublicKey, packetTypePublicSubkey:
isSubkey := tag == packetTypePublicSubkey
p = &PublicKey{IsSubkey: isSubkey}
case packetTypeCompressed:
p = new(Compressed)
case packetTypeSymmetricallyEncrypted:
p = new(SymmetricallyEncrypted)
case packetTypeLiteralData:
p = new(LiteralData)
case packetTypeUserId:
p = new(UserId)
case packetTypeUserAttribute:
p = new(UserAttribute)
case packetTypeSymmetricallyEncryptedIntegrityProtected:
se := new(SymmetricallyEncrypted)
se.IntegrityProtected = true
p = se
case packetTypeAEADEncrypted:
p = new(AEADEncrypted)
case packetPadding:
p = Padding(len)
case packetTypeMarker:
p = new(Marker)
case packetTypeTrust:
// Not implemented, just consume
err = errors.UnknownPacketTypeError(tag)
default:
// Packet Tags from 0 to 39 are critical.
// Packet Tags from 40 to 63 are non-critical.
if tag < 40 {
err = errors.CriticalUnknownPacketTypeError(tag)
} else {
err = errors.UnknownPacketTypeError(tag)
}
}
if p != nil {
err = p.parse(contents)
}
if err != nil {
consumeAll(contents)
}
return
}
// ReadWithCheck reads a single OpenPGP message packet from the given io.Reader. If there is an
// error parsing a packet, the whole packet is consumed from the input.
// ReadWithCheck additionally checks if the OpenPGP message packet sequence adheres
// to the packet composition rules in rfc4880, if not throws an error.
func ReadWithCheck(r io.Reader, sequence *SequenceVerifier) (p Packet, msgErr error, err error) {
tag, len, contents, err := readHeader(r)
if err != nil {
return
}
switch tag {
case packetTypeEncryptedKey:
msgErr = sequence.Next(ESKSymbol)
p = new(EncryptedKey)
case packetTypeSignature:
msgErr = sequence.Next(SigSymbol)
p = new(Signature)
case packetTypeSymmetricKeyEncrypted:
msgErr = sequence.Next(ESKSymbol)
p = new(SymmetricKeyEncrypted)
case packetTypeOnePassSignature:
msgErr = sequence.Next(OPSSymbol)
p = new(OnePassSignature)
case packetTypeCompressed:
msgErr = sequence.Next(CompSymbol)
p = new(Compressed)
case packetTypeSymmetricallyEncrypted:
msgErr = sequence.Next(EncSymbol)
p = new(SymmetricallyEncrypted)
case packetTypeLiteralData:
msgErr = sequence.Next(LDSymbol)
p = new(LiteralData)
case packetTypeSymmetricallyEncryptedIntegrityProtected:
msgErr = sequence.Next(EncSymbol)
se := new(SymmetricallyEncrypted)
se.IntegrityProtected = true
p = se
case packetTypeAEADEncrypted:
msgErr = sequence.Next(EncSymbol)
p = new(AEADEncrypted)
case packetPadding:
p = Padding(len)
case packetTypeMarker:
p = new(Marker)
case packetTypeTrust:
// Not implemented, just consume
err = errors.UnknownPacketTypeError(tag)
case packetTypePrivateKey,
packetTypePrivateSubkey,
packetTypePublicKey,
packetTypePublicSubkey,
packetTypeUserId,
packetTypeUserAttribute:
msgErr = sequence.Next(UnknownSymbol)
consumeAll(contents)
default:
// Packet Tags from 0 to 39 are critical.
// Packet Tags from 40 to 63 are non-critical.
if tag < 40 {
err = errors.CriticalUnknownPacketTypeError(tag)
} else {
err = errors.UnknownPacketTypeError(tag)
}
}
if p != nil {
err = p.parse(contents)
}
if err != nil {
consumeAll(contents)
}
return
}
// SignatureType represents the different semantic meanings of an OpenPGP
// signature. See RFC 4880, section 5.2.1.
type SignatureType uint8
const (
SigTypeBinary SignatureType = 0x00
SigTypeText SignatureType = 0x01
SigTypeGenericCert SignatureType = 0x10
SigTypePersonaCert SignatureType = 0x11
SigTypeCasualCert SignatureType = 0x12
SigTypePositiveCert SignatureType = 0x13
SigTypeSubkeyBinding SignatureType = 0x18
SigTypePrimaryKeyBinding SignatureType = 0x19
SigTypeDirectSignature SignatureType = 0x1F
SigTypeKeyRevocation SignatureType = 0x20
SigTypeSubkeyRevocation SignatureType = 0x28
SigTypeCertificationRevocation SignatureType = 0x30
)
// PublicKeyAlgorithm represents the different public key system specified for
// OpenPGP. See
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-12
type PublicKeyAlgorithm uint8
const (
PubKeyAlgoRSA PublicKeyAlgorithm = 1
PubKeyAlgoElGamal PublicKeyAlgorithm = 16
PubKeyAlgoDSA PublicKeyAlgorithm = 17
// RFC 6637, Section 5.
PubKeyAlgoECDH PublicKeyAlgorithm = 18
PubKeyAlgoECDSA PublicKeyAlgorithm = 19
// https://www.ietf.org/archive/id/draft-koch-eddsa-for-openpgp-04.txt
PubKeyAlgoEdDSA PublicKeyAlgorithm = 22
// https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh
PubKeyAlgoX25519 PublicKeyAlgorithm = 25
PubKeyAlgoX448 PublicKeyAlgorithm = 26
PubKeyAlgoEd25519 PublicKeyAlgorithm = 27
PubKeyAlgoEd448 PublicKeyAlgorithm = 28
// Deprecated in RFC 4880, Section 13.5. Use key flags instead.
PubKeyAlgoRSAEncryptOnly PublicKeyAlgorithm = 2
PubKeyAlgoRSASignOnly PublicKeyAlgorithm = 3
)
// CanEncrypt returns true if it's possible to encrypt a message to a public
// key of the given type.
func (pka PublicKeyAlgorithm) CanEncrypt() bool {
switch pka {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoElGamal, PubKeyAlgoECDH, PubKeyAlgoX25519, PubKeyAlgoX448:
return true
}
return false
}
// CanSign returns true if it's possible for a public key of the given type to
// sign a message.
func (pka PublicKeyAlgorithm) CanSign() bool {
switch pka {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA, PubKeyAlgoEdDSA, PubKeyAlgoEd25519, PubKeyAlgoEd448:
return true
}
return false
}
// CipherFunction represents the different block ciphers specified for OpenPGP. See
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-13
type CipherFunction algorithm.CipherFunction
const (
Cipher3DES CipherFunction = 2
CipherCAST5 CipherFunction = 3
CipherAES128 CipherFunction = 7
CipherAES192 CipherFunction = 8
CipherAES256 CipherFunction = 9
)
// KeySize returns the key size, in bytes, of cipher.
func (cipher CipherFunction) KeySize() int {
return algorithm.CipherFunction(cipher).KeySize()
}
// IsSupported returns true if the cipher is supported from the library
func (cipher CipherFunction) IsSupported() bool {
return algorithm.CipherFunction(cipher).KeySize() > 0
}
// blockSize returns the block size, in bytes, of cipher.
func (cipher CipherFunction) blockSize() int {
return algorithm.CipherFunction(cipher).BlockSize()
}
// new returns a fresh instance of the given cipher.
func (cipher CipherFunction) new(key []byte) (block cipher.Block) {
return algorithm.CipherFunction(cipher).New(key)
}
// padToKeySize left-pads a MPI with zeroes to match the length of the
// specified RSA public.
func padToKeySize(pub *rsa.PublicKey, b []byte) []byte {
k := (pub.N.BitLen() + 7) / 8
if len(b) >= k {
return b
}
bb := make([]byte, k)
copy(bb[len(bb)-len(b):], b)
return bb
}
// CompressionAlgo Represents the different compression algorithms
// supported by OpenPGP (except for BZIP2, which is not currently
// supported). See Section 9.3 of RFC 4880.
type CompressionAlgo uint8
const (
CompressionNone CompressionAlgo = 0
CompressionZIP CompressionAlgo = 1
CompressionZLIB CompressionAlgo = 2
)
// AEADMode represents the different Authenticated Encryption with Associated
// Data specified for OpenPGP.
// See https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#section-9.6
type AEADMode algorithm.AEADMode
const (
AEADModeEAX AEADMode = 1
AEADModeOCB AEADMode = 2
AEADModeGCM AEADMode = 3
)
func (mode AEADMode) IvLength() int {
return algorithm.AEADMode(mode).NonceLength()
}
func (mode AEADMode) TagLength() int {
return algorithm.AEADMode(mode).TagLength()
}
// IsSupported returns true if the aead mode is supported from the library
func (mode AEADMode) IsSupported() bool {
return algorithm.AEADMode(mode).TagLength() > 0
}
// new returns a fresh instance of the given mode.
func (mode AEADMode) new(block cipher.Block) cipher.AEAD {
return algorithm.AEADMode(mode).New(block)
}
// ReasonForRevocation represents a revocation reason code as per RFC4880
// section 5.2.3.23.
type ReasonForRevocation uint8
const (
NoReason ReasonForRevocation = 0
KeySuperseded ReasonForRevocation = 1
KeyCompromised ReasonForRevocation = 2
KeyRetired ReasonForRevocation = 3
UserIDNotValid ReasonForRevocation = 32
Unknown ReasonForRevocation = 200
)
func NewReasonForRevocation(value byte) ReasonForRevocation {
if value < 4 || value == 32 {
return ReasonForRevocation(value)
}
return Unknown
}
// Curve is a mapping to supported ECC curves for key generation.
// See https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-06.html#name-curve-specific-wire-formats
type Curve string
const (
Curve25519 Curve = "Curve25519"
Curve448 Curve = "Curve448"
CurveNistP256 Curve = "P256"
CurveNistP384 Curve = "P384"
CurveNistP521 Curve = "P521"
CurveSecP256k1 Curve = "SecP256k1"
CurveBrainpoolP256 Curve = "BrainpoolP256"
CurveBrainpoolP384 Curve = "BrainpoolP384"
CurveBrainpoolP512 Curve = "BrainpoolP512"
)
// TrustLevel represents a trust level per RFC4880 5.2.3.13
type TrustLevel uint8
// TrustAmount represents a trust amount per RFC4880 5.2.3.13
type TrustAmount uint8
const (
// versionSize is the length in bytes of the version value.
versionSize = 1
// algorithmSize is the length in bytes of the key algorithm value.
algorithmSize = 1
// keyVersionSize is the length in bytes of the key version value
keyVersionSize = 1
// keyIdSize is the length in bytes of the key identifier value.
keyIdSize = 8
// timestampSize is the length in bytes of encoded timestamps.
timestampSize = 4
// fingerprintSizeV6 is the length in bytes of the key fingerprint in v6.
fingerprintSizeV6 = 32
// fingerprintSize is the length in bytes of the key fingerprint.
fingerprintSize = 20
)
package packet
// This file implements the pushdown automata (PDA) from PGPainless (Paul Schaub)
// to verify pgp packet sequences. See Paul's blogpost for more details:
// https://blog.jabberhead.tk/2022/10/26/implementing-packet-sequence-validation-using-pushdown-automata/
import (
"fmt"
"github.com/ProtonMail/go-crypto/openpgp/errors"
)
func NewErrMalformedMessage(from State, input InputSymbol, stackSymbol StackSymbol) errors.ErrMalformedMessage {
return errors.ErrMalformedMessage(fmt.Sprintf("state %d, input symbol %d, stack symbol %d ", from, input, stackSymbol))
}
// InputSymbol defines the input alphabet of the PDA
type InputSymbol uint8
const (
LDSymbol InputSymbol = iota
SigSymbol
OPSSymbol
CompSymbol
ESKSymbol
EncSymbol
EOSSymbol
UnknownSymbol
)
// StackSymbol defines the stack alphabet of the PDA
type StackSymbol int8
const (
MsgStackSymbol StackSymbol = iota
OpsStackSymbol
KeyStackSymbol
EndStackSymbol
EmptyStackSymbol
)
// State defines the states of the PDA
type State int8
const (
OpenPGPMessage State = iota
ESKMessage
LiteralMessage
CompressedMessage
EncryptedMessage
ValidMessage
)
// transition represents a state transition in the PDA
type transition func(input InputSymbol, stackSymbol StackSymbol) (State, []StackSymbol, bool, error)
// SequenceVerifier is a pushdown automata to verify
// PGP messages packet sequences according to rfc4880.
type SequenceVerifier struct {
stack []StackSymbol
state State
}
// Next performs a state transition with the given input symbol.
// If the transition fails a ErrMalformedMessage is returned.
func (sv *SequenceVerifier) Next(input InputSymbol) error {
for {
stackSymbol := sv.popStack()
transitionFunc := getTransition(sv.state)
nextState, newStackSymbols, redo, err := transitionFunc(input, stackSymbol)
if err != nil {
return err
}
if redo {
sv.pushStack(stackSymbol)
}
for _, newStackSymbol := range newStackSymbols {
sv.pushStack(newStackSymbol)
}
sv.state = nextState
if !redo {
break
}
}
return nil
}
// Valid returns true if RDA is in a valid state.
func (sv *SequenceVerifier) Valid() bool {
return sv.state == ValidMessage && len(sv.stack) == 0
}
func (sv *SequenceVerifier) AssertValid() error {
if !sv.Valid() {
return errors.ErrMalformedMessage("invalid message")
}
return nil
}
func NewSequenceVerifier() *SequenceVerifier {
return &SequenceVerifier{
stack: []StackSymbol{EndStackSymbol, MsgStackSymbol},
state: OpenPGPMessage,
}
}
func (sv *SequenceVerifier) popStack() StackSymbol {
if len(sv.stack) == 0 {
return EmptyStackSymbol
}
elemIndex := len(sv.stack) - 1
stackSymbol := sv.stack[elemIndex]
sv.stack = sv.stack[:elemIndex]
return stackSymbol
}
func (sv *SequenceVerifier) pushStack(stackSymbol StackSymbol) {
sv.stack = append(sv.stack, stackSymbol)
}
func getTransition(from State) transition {
switch from {
case OpenPGPMessage:
return fromOpenPGPMessage
case LiteralMessage:
return fromLiteralMessage
case CompressedMessage:
return fromCompressedMessage
case EncryptedMessage:
return fromEncryptedMessage
case ESKMessage:
return fromESKMessage
case ValidMessage:
return fromValidMessage
}
return nil
}
// fromOpenPGPMessage is the transition for the state OpenPGPMessage.
func fromOpenPGPMessage(input InputSymbol, stackSymbol StackSymbol) (State, []StackSymbol, bool, error) {
if stackSymbol != MsgStackSymbol {
return 0, nil, false, NewErrMalformedMessage(OpenPGPMessage, input, stackSymbol)
}
switch input {
case LDSymbol:
return LiteralMessage, nil, false, nil
case SigSymbol:
return OpenPGPMessage, []StackSymbol{MsgStackSymbol}, false, nil
case OPSSymbol:
return OpenPGPMessage, []StackSymbol{OpsStackSymbol, MsgStackSymbol}, false, nil
case CompSymbol:
return CompressedMessage, nil, false, nil
case ESKSymbol:
return ESKMessage, []StackSymbol{KeyStackSymbol}, false, nil
case EncSymbol:
return EncryptedMessage, nil, false, nil
}
return 0, nil, false, NewErrMalformedMessage(OpenPGPMessage, input, stackSymbol)
}
// fromESKMessage is the transition for the state ESKMessage.
func fromESKMessage(input InputSymbol, stackSymbol StackSymbol) (State, []StackSymbol, bool, error) {
if stackSymbol != KeyStackSymbol {
return 0, nil, false, NewErrMalformedMessage(ESKMessage, input, stackSymbol)
}
switch input {
case ESKSymbol:
return ESKMessage, []StackSymbol{KeyStackSymbol}, false, nil
case EncSymbol:
return EncryptedMessage, nil, false, nil
}
return 0, nil, false, NewErrMalformedMessage(ESKMessage, input, stackSymbol)
}
// fromLiteralMessage is the transition for the state LiteralMessage.
func fromLiteralMessage(input InputSymbol, stackSymbol StackSymbol) (State, []StackSymbol, bool, error) {
switch input {
case SigSymbol:
if stackSymbol == OpsStackSymbol {
return LiteralMessage, nil, false, nil
}
case EOSSymbol:
if stackSymbol == EndStackSymbol {
return ValidMessage, nil, false, nil
}
}
return 0, nil, false, NewErrMalformedMessage(LiteralMessage, input, stackSymbol)
}
// fromLiteralMessage is the transition for the state CompressedMessage.
func fromCompressedMessage(input InputSymbol, stackSymbol StackSymbol) (State, []StackSymbol, bool, error) {
switch input {
case SigSymbol:
if stackSymbol == OpsStackSymbol {
return CompressedMessage, nil, false, nil
}
case EOSSymbol:
if stackSymbol == EndStackSymbol {
return ValidMessage, nil, false, nil
}
}
return OpenPGPMessage, []StackSymbol{MsgStackSymbol}, true, nil
}
// fromEncryptedMessage is the transition for the state EncryptedMessage.
func fromEncryptedMessage(input InputSymbol, stackSymbol StackSymbol) (State, []StackSymbol, bool, error) {
switch input {
case SigSymbol:
if stackSymbol == OpsStackSymbol {
return EncryptedMessage, nil, false, nil
}
case EOSSymbol:
if stackSymbol == EndStackSymbol {
return ValidMessage, nil, false, nil
}
}
return OpenPGPMessage, []StackSymbol{MsgStackSymbol}, true, nil
}
// fromValidMessage is the transition for the state ValidMessage.
func fromValidMessage(input InputSymbol, stackSymbol StackSymbol) (State, []StackSymbol, bool, error) {
return 0, nil, false, NewErrMalformedMessage(ValidMessage, input, stackSymbol)
}
package packet
import (
"io"
"github.com/ProtonMail/go-crypto/openpgp/errors"
)
// UnsupportedPackage represents a OpenPGP packet with a known packet type
// but with unsupported content.
type UnsupportedPacket struct {
IncompletePacket Packet
Error errors.UnsupportedError
}
// Implements the Packet interface
func (up *UnsupportedPacket) parse(read io.Reader) error {
err := up.IncompletePacket.parse(read)
if castedErr, ok := err.(errors.UnsupportedError); ok {
up.Error = castedErr
return nil
}
return err
}
package packet
import (
"io"
)
// Padding type represents a Padding Packet (Tag 21).
// The padding type is represented by the length of its padding.
// see https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh#name-padding-packet-tag-21
type Padding int
// parse just ignores the padding content.
func (pad Padding) parse(reader io.Reader) error {
_, err := io.CopyN(io.Discard, reader, int64(pad))
return err
}
// SerializePadding writes the padding to writer.
func (pad Padding) SerializePadding(writer io.Writer, rand io.Reader) error {
err := serializeHeader(writer, packetPadding, int(pad))
if err != nil {
return err
}
_, err = io.CopyN(writer, rand, int64(pad))
return err
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/cipher"
"crypto/dsa"
"crypto/rsa"
"crypto/sha1"
"crypto/sha256"
"crypto/subtle"
"fmt"
"io"
"math/big"
"strconv"
"time"
"github.com/ProtonMail/go-crypto/openpgp/ecdh"
"github.com/ProtonMail/go-crypto/openpgp/ecdsa"
"github.com/ProtonMail/go-crypto/openpgp/ed25519"
"github.com/ProtonMail/go-crypto/openpgp/ed448"
"github.com/ProtonMail/go-crypto/openpgp/eddsa"
"github.com/ProtonMail/go-crypto/openpgp/elgamal"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/encoding"
"github.com/ProtonMail/go-crypto/openpgp/s2k"
"github.com/ProtonMail/go-crypto/openpgp/x25519"
"github.com/ProtonMail/go-crypto/openpgp/x448"
"golang.org/x/crypto/hkdf"
)
// PrivateKey represents a possibly encrypted private key. See RFC 4880,
// section 5.5.3.
type PrivateKey struct {
PublicKey
Encrypted bool // if true then the private key is unavailable until Decrypt has been called.
encryptedData []byte
cipher CipherFunction
s2k func(out, in []byte)
aead AEADMode // only relevant if S2KAEAD is enabled
// An *{rsa|dsa|elgamal|ecdh|ecdsa|ed25519|ed448}.PrivateKey or
// crypto.Signer/crypto.Decrypter (Decryptor RSA only).
PrivateKey interface{}
iv []byte
// Type of encryption of the S2K packet
// Allowed values are 0 (Not encrypted), 253 (AEAD), 254 (SHA1), or
// 255 (2-byte checksum)
s2kType S2KType
// Full parameters of the S2K packet
s2kParams *s2k.Params
}
// S2KType s2k packet type
type S2KType uint8
const (
// S2KNON unencrypt
S2KNON S2KType = 0
// S2KAEAD use authenticated encryption
S2KAEAD S2KType = 253
// S2KSHA1 sha1 sum check
S2KSHA1 S2KType = 254
// S2KCHECKSUM sum check
S2KCHECKSUM S2KType = 255
)
func NewRSAPrivateKey(creationTime time.Time, priv *rsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewRSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewDSAPrivateKey(creationTime time.Time, priv *dsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewDSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewElGamalPrivateKey(creationTime time.Time, priv *elgamal.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewElGamalPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewECDSAPrivateKey(creationTime time.Time, priv *ecdsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewECDSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewEdDSAPrivateKey(creationTime time.Time, priv *eddsa.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewEdDSAPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewECDHPrivateKey(creationTime time.Time, priv *ecdh.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewECDHPublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewX25519PrivateKey(creationTime time.Time, priv *x25519.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewX25519PublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewX448PrivateKey(creationTime time.Time, priv *x448.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewX448PublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewEd25519PrivateKey(creationTime time.Time, priv *ed25519.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewEd25519PublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
func NewEd448PrivateKey(creationTime time.Time, priv *ed448.PrivateKey) *PrivateKey {
pk := new(PrivateKey)
pk.PublicKey = *NewEd448PublicKey(creationTime, &priv.PublicKey)
pk.PrivateKey = priv
return pk
}
// NewSignerPrivateKey creates a PrivateKey from a crypto.Signer that
// implements RSA, ECDSA or EdDSA.
func NewSignerPrivateKey(creationTime time.Time, signer interface{}) *PrivateKey {
pk := new(PrivateKey)
// In general, the public Keys should be used as pointers. We still
// type-switch on the values, for backwards-compatibility.
switch pubkey := signer.(type) {
case *rsa.PrivateKey:
pk.PublicKey = *NewRSAPublicKey(creationTime, &pubkey.PublicKey)
case rsa.PrivateKey:
pk.PublicKey = *NewRSAPublicKey(creationTime, &pubkey.PublicKey)
case *ecdsa.PrivateKey:
pk.PublicKey = *NewECDSAPublicKey(creationTime, &pubkey.PublicKey)
case ecdsa.PrivateKey:
pk.PublicKey = *NewECDSAPublicKey(creationTime, &pubkey.PublicKey)
case *eddsa.PrivateKey:
pk.PublicKey = *NewEdDSAPublicKey(creationTime, &pubkey.PublicKey)
case eddsa.PrivateKey:
pk.PublicKey = *NewEdDSAPublicKey(creationTime, &pubkey.PublicKey)
case *ed25519.PrivateKey:
pk.PublicKey = *NewEd25519PublicKey(creationTime, &pubkey.PublicKey)
case ed25519.PrivateKey:
pk.PublicKey = *NewEd25519PublicKey(creationTime, &pubkey.PublicKey)
case *ed448.PrivateKey:
pk.PublicKey = *NewEd448PublicKey(creationTime, &pubkey.PublicKey)
case ed448.PrivateKey:
pk.PublicKey = *NewEd448PublicKey(creationTime, &pubkey.PublicKey)
default:
panic("openpgp: unknown signer type in NewSignerPrivateKey")
}
pk.PrivateKey = signer
return pk
}
// NewDecrypterPrivateKey creates a PrivateKey from a *{rsa|elgamal|ecdh|x25519|x448}.PrivateKey.
func NewDecrypterPrivateKey(creationTime time.Time, decrypter interface{}) *PrivateKey {
pk := new(PrivateKey)
switch priv := decrypter.(type) {
case *rsa.PrivateKey:
pk.PublicKey = *NewRSAPublicKey(creationTime, &priv.PublicKey)
case *elgamal.PrivateKey:
pk.PublicKey = *NewElGamalPublicKey(creationTime, &priv.PublicKey)
case *ecdh.PrivateKey:
pk.PublicKey = *NewECDHPublicKey(creationTime, &priv.PublicKey)
case *x25519.PrivateKey:
pk.PublicKey = *NewX25519PublicKey(creationTime, &priv.PublicKey)
case *x448.PrivateKey:
pk.PublicKey = *NewX448PublicKey(creationTime, &priv.PublicKey)
default:
panic("openpgp: unknown decrypter type in NewDecrypterPrivateKey")
}
pk.PrivateKey = decrypter
return pk
}
func (pk *PrivateKey) parse(r io.Reader) (err error) {
err = (&pk.PublicKey).parse(r)
if err != nil {
return
}
v5 := pk.PublicKey.Version == 5
v6 := pk.PublicKey.Version == 6
if V5Disabled && v5 {
return errors.UnsupportedError("support for parsing v5 entities is disabled; build with `-tags v5` if needed")
}
var buf [1]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
pk.s2kType = S2KType(buf[0])
var optCount [1]byte
if v5 || (v6 && pk.s2kType != S2KNON) {
if _, err = readFull(r, optCount[:]); err != nil {
return
}
}
switch pk.s2kType {
case S2KNON:
pk.s2k = nil
pk.Encrypted = false
case S2KSHA1, S2KCHECKSUM, S2KAEAD:
if (v5 || v6) && pk.s2kType == S2KCHECKSUM {
return errors.StructuralError(fmt.Sprintf("wrong s2k identifier for version %d", pk.Version))
}
_, err = readFull(r, buf[:])
if err != nil {
return
}
pk.cipher = CipherFunction(buf[0])
if pk.cipher != 0 && !pk.cipher.IsSupported() {
return errors.UnsupportedError("unsupported cipher function in private key")
}
// [Optional] If string-to-key usage octet was 253,
// a one-octet AEAD algorithm.
if pk.s2kType == S2KAEAD {
_, err = readFull(r, buf[:])
if err != nil {
return
}
pk.aead = AEADMode(buf[0])
if !pk.aead.IsSupported() {
return errors.UnsupportedError("unsupported aead mode in private key")
}
}
// [Optional] Only for a version 6 packet,
// and if string-to-key usage octet was 255, 254, or 253,
// an one-octet count of the following field.
if v6 {
_, err = readFull(r, buf[:])
if err != nil {
return
}
}
pk.s2kParams, err = s2k.ParseIntoParams(r)
if err != nil {
return
}
if pk.s2kParams.Dummy() {
return
}
if pk.s2kParams.Mode() == s2k.Argon2S2K && pk.s2kType != S2KAEAD {
return errors.StructuralError("using Argon2 S2K without AEAD is not allowed")
}
if pk.s2kParams.Mode() == s2k.SimpleS2K && pk.Version == 6 {
return errors.StructuralError("using Simple S2K with version 6 keys is not allowed")
}
pk.s2k, err = pk.s2kParams.Function()
if err != nil {
return
}
pk.Encrypted = true
default:
return errors.UnsupportedError("deprecated s2k function in private key")
}
if pk.Encrypted {
var ivSize int
// If the S2K usage octet was 253, the IV is of the size expected by the AEAD mode,
// unless it's a version 5 key, in which case it's the size of the symmetric cipher's block size.
// For all other S2K modes, it's always the block size.
if !v5 && pk.s2kType == S2KAEAD {
ivSize = pk.aead.IvLength()
} else {
ivSize = pk.cipher.blockSize()
}
if ivSize == 0 {
return errors.UnsupportedError("unsupported cipher in private key: " + strconv.Itoa(int(pk.cipher)))
}
pk.iv = make([]byte, ivSize)
_, err = readFull(r, pk.iv)
if err != nil {
return
}
if v5 && pk.s2kType == S2KAEAD {
pk.iv = pk.iv[:pk.aead.IvLength()]
}
}
var privateKeyData []byte
if v5 {
var n [4]byte /* secret material four octet count */
_, err = readFull(r, n[:])
if err != nil {
return
}
count := uint32(uint32(n[0])<<24 | uint32(n[1])<<16 | uint32(n[2])<<8 | uint32(n[3]))
if !pk.Encrypted {
count = count + 2 /* two octet checksum */
}
privateKeyData = make([]byte, count)
_, err = readFull(r, privateKeyData)
if err != nil {
return
}
} else {
privateKeyData, err = io.ReadAll(r)
if err != nil {
return
}
}
if !pk.Encrypted {
if len(privateKeyData) < 2 {
return errors.StructuralError("truncated private key data")
}
if pk.Version != 6 {
// checksum
var sum uint16
for i := 0; i < len(privateKeyData)-2; i++ {
sum += uint16(privateKeyData[i])
}
if privateKeyData[len(privateKeyData)-2] != uint8(sum>>8) ||
privateKeyData[len(privateKeyData)-1] != uint8(sum) {
return errors.StructuralError("private key checksum failure")
}
privateKeyData = privateKeyData[:len(privateKeyData)-2]
return pk.parsePrivateKey(privateKeyData)
} else {
// No checksum
return pk.parsePrivateKey(privateKeyData)
}
}
pk.encryptedData = privateKeyData
return
}
// Dummy returns true if the private key is a dummy key. This is a GNU extension.
func (pk *PrivateKey) Dummy() bool {
return pk.s2kParams.Dummy()
}
func mod64kHash(d []byte) uint16 {
var h uint16
for _, b := range d {
h += uint16(b)
}
return h
}
func (pk *PrivateKey) Serialize(w io.Writer) (err error) {
contents := bytes.NewBuffer(nil)
err = pk.PublicKey.serializeWithoutHeaders(contents)
if err != nil {
return
}
if _, err = contents.Write([]byte{uint8(pk.s2kType)}); err != nil {
return
}
optional := bytes.NewBuffer(nil)
if pk.Encrypted || pk.Dummy() {
// [Optional] If string-to-key usage octet was 255, 254, or 253,
// a one-octet symmetric encryption algorithm.
if _, err = optional.Write([]byte{uint8(pk.cipher)}); err != nil {
return
}
// [Optional] If string-to-key usage octet was 253,
// a one-octet AEAD algorithm.
if pk.s2kType == S2KAEAD {
if _, err = optional.Write([]byte{uint8(pk.aead)}); err != nil {
return
}
}
s2kBuffer := bytes.NewBuffer(nil)
if err := pk.s2kParams.Serialize(s2kBuffer); err != nil {
return err
}
// [Optional] Only for a version 6 packet, and if string-to-key
// usage octet was 255, 254, or 253, an one-octet
// count of the following field.
if pk.Version == 6 {
if _, err = optional.Write([]byte{uint8(s2kBuffer.Len())}); err != nil {
return
}
}
// [Optional] If string-to-key usage octet was 255, 254, or 253,
// a string-to-key (S2K) specifier. The length of the string-to-key specifier
// depends on its type
if _, err = io.Copy(optional, s2kBuffer); err != nil {
return
}
// IV
if pk.Encrypted {
if _, err = optional.Write(pk.iv); err != nil {
return
}
if pk.Version == 5 && pk.s2kType == S2KAEAD {
// Add padding for version 5
padding := make([]byte, pk.cipher.blockSize()-len(pk.iv))
if _, err = optional.Write(padding); err != nil {
return
}
}
}
}
if pk.Version == 5 || (pk.Version == 6 && pk.s2kType != S2KNON) {
contents.Write([]byte{uint8(optional.Len())})
}
if _, err := io.Copy(contents, optional); err != nil {
return err
}
if !pk.Dummy() {
l := 0
var priv []byte
if !pk.Encrypted {
buf := bytes.NewBuffer(nil)
err = pk.serializePrivateKey(buf)
if err != nil {
return err
}
l = buf.Len()
if pk.Version != 6 {
checksum := mod64kHash(buf.Bytes())
buf.Write([]byte{byte(checksum >> 8), byte(checksum)})
}
priv = buf.Bytes()
} else {
priv, l = pk.encryptedData, len(pk.encryptedData)
}
if pk.Version == 5 {
contents.Write([]byte{byte(l >> 24), byte(l >> 16), byte(l >> 8), byte(l)})
}
contents.Write(priv)
}
ptype := packetTypePrivateKey
if pk.IsSubkey {
ptype = packetTypePrivateSubkey
}
err = serializeHeader(w, ptype, contents.Len())
if err != nil {
return
}
_, err = io.Copy(w, contents)
if err != nil {
return
}
return
}
func serializeRSAPrivateKey(w io.Writer, priv *rsa.PrivateKey) error {
if _, err := w.Write(new(encoding.MPI).SetBig(priv.D).EncodedBytes()); err != nil {
return err
}
if _, err := w.Write(new(encoding.MPI).SetBig(priv.Primes[1]).EncodedBytes()); err != nil {
return err
}
if _, err := w.Write(new(encoding.MPI).SetBig(priv.Primes[0]).EncodedBytes()); err != nil {
return err
}
_, err := w.Write(new(encoding.MPI).SetBig(priv.Precomputed.Qinv).EncodedBytes())
return err
}
func serializeDSAPrivateKey(w io.Writer, priv *dsa.PrivateKey) error {
_, err := w.Write(new(encoding.MPI).SetBig(priv.X).EncodedBytes())
return err
}
func serializeElGamalPrivateKey(w io.Writer, priv *elgamal.PrivateKey) error {
_, err := w.Write(new(encoding.MPI).SetBig(priv.X).EncodedBytes())
return err
}
func serializeECDSAPrivateKey(w io.Writer, priv *ecdsa.PrivateKey) error {
_, err := w.Write(encoding.NewMPI(priv.MarshalIntegerSecret()).EncodedBytes())
return err
}
func serializeEdDSAPrivateKey(w io.Writer, priv *eddsa.PrivateKey) error {
_, err := w.Write(encoding.NewMPI(priv.MarshalByteSecret()).EncodedBytes())
return err
}
func serializeECDHPrivateKey(w io.Writer, priv *ecdh.PrivateKey) error {
_, err := w.Write(encoding.NewMPI(priv.MarshalByteSecret()).EncodedBytes())
return err
}
func serializeX25519PrivateKey(w io.Writer, priv *x25519.PrivateKey) error {
_, err := w.Write(priv.Secret)
return err
}
func serializeX448PrivateKey(w io.Writer, priv *x448.PrivateKey) error {
_, err := w.Write(priv.Secret)
return err
}
func serializeEd25519PrivateKey(w io.Writer, priv *ed25519.PrivateKey) error {
_, err := w.Write(priv.MarshalByteSecret())
return err
}
func serializeEd448PrivateKey(w io.Writer, priv *ed448.PrivateKey) error {
_, err := w.Write(priv.MarshalByteSecret())
return err
}
// decrypt decrypts an encrypted private key using a decryption key.
func (pk *PrivateKey) decrypt(decryptionKey []byte) error {
if pk.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
if !pk.Encrypted {
return nil
}
block := pk.cipher.new(decryptionKey)
var data []byte
switch pk.s2kType {
case S2KAEAD:
aead := pk.aead.new(block)
additionalData, err := pk.additionalData()
if err != nil {
return err
}
// Decrypt the encrypted key material with aead
data, err = aead.Open(nil, pk.iv, pk.encryptedData, additionalData)
if err != nil {
return err
}
case S2KSHA1, S2KCHECKSUM:
cfb := cipher.NewCFBDecrypter(block, pk.iv)
data = make([]byte, len(pk.encryptedData))
cfb.XORKeyStream(data, pk.encryptedData)
if pk.s2kType == S2KSHA1 {
if len(data) < sha1.Size {
return errors.StructuralError("truncated private key data")
}
h := sha1.New()
h.Write(data[:len(data)-sha1.Size])
sum := h.Sum(nil)
if !bytes.Equal(sum, data[len(data)-sha1.Size:]) {
return errors.StructuralError("private key checksum failure")
}
data = data[:len(data)-sha1.Size]
} else {
if len(data) < 2 {
return errors.StructuralError("truncated private key data")
}
var sum uint16
for i := 0; i < len(data)-2; i++ {
sum += uint16(data[i])
}
if data[len(data)-2] != uint8(sum>>8) ||
data[len(data)-1] != uint8(sum) {
return errors.StructuralError("private key checksum failure")
}
data = data[:len(data)-2]
}
default:
return errors.InvalidArgumentError("invalid s2k type")
}
err := pk.parsePrivateKey(data)
if _, ok := err.(errors.KeyInvalidError); ok {
return errors.KeyInvalidError("invalid key parameters")
}
if err != nil {
return err
}
// Mark key as unencrypted
pk.s2kType = S2KNON
pk.s2k = nil
pk.Encrypted = false
pk.encryptedData = nil
return nil
}
func (pk *PrivateKey) decryptWithCache(passphrase []byte, keyCache *s2k.Cache) error {
if pk.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
if !pk.Encrypted {
return nil
}
key, err := keyCache.GetOrComputeDerivedKey(passphrase, pk.s2kParams, pk.cipher.KeySize())
if err != nil {
return err
}
if pk.s2kType == S2KAEAD {
key = pk.applyHKDF(key)
}
return pk.decrypt(key)
}
// Decrypt decrypts an encrypted private key using a passphrase.
func (pk *PrivateKey) Decrypt(passphrase []byte) error {
if pk.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
if !pk.Encrypted {
return nil
}
key := make([]byte, pk.cipher.KeySize())
pk.s2k(key, passphrase)
if pk.s2kType == S2KAEAD {
key = pk.applyHKDF(key)
}
return pk.decrypt(key)
}
// DecryptPrivateKeys decrypts all encrypted keys with the given config and passphrase.
// Avoids recomputation of similar s2k key derivations.
func DecryptPrivateKeys(keys []*PrivateKey, passphrase []byte) error {
// Create a cache to avoid recomputation of key derviations for the same passphrase.
s2kCache := &s2k.Cache{}
for _, key := range keys {
if key != nil && !key.Dummy() && key.Encrypted {
err := key.decryptWithCache(passphrase, s2kCache)
if err != nil {
return err
}
}
}
return nil
}
// encrypt encrypts an unencrypted private key.
func (pk *PrivateKey) encrypt(key []byte, params *s2k.Params, s2kType S2KType, cipherFunction CipherFunction, rand io.Reader) error {
if pk.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
if pk.Encrypted {
return nil
}
// check if encryptionKey has the correct size
if len(key) != cipherFunction.KeySize() {
return errors.InvalidArgumentError("supplied encryption key has the wrong size")
}
if params.Mode() == s2k.Argon2S2K && s2kType != S2KAEAD {
return errors.InvalidArgumentError("using Argon2 S2K without AEAD is not allowed")
}
if params.Mode() != s2k.Argon2S2K && params.Mode() != s2k.IteratedSaltedS2K &&
params.Mode() != s2k.SaltedS2K { // only allowed for high-entropy passphrases
return errors.InvalidArgumentError("insecure S2K mode")
}
priv := bytes.NewBuffer(nil)
err := pk.serializePrivateKey(priv)
if err != nil {
return err
}
pk.cipher = cipherFunction
pk.s2kParams = params
pk.s2k, err = pk.s2kParams.Function()
if err != nil {
return err
}
privateKeyBytes := priv.Bytes()
pk.s2kType = s2kType
block := pk.cipher.new(key)
switch s2kType {
case S2KAEAD:
if pk.aead == 0 {
return errors.StructuralError("aead mode is not set on key")
}
aead := pk.aead.new(block)
additionalData, err := pk.additionalData()
if err != nil {
return err
}
pk.iv = make([]byte, aead.NonceSize())
_, err = io.ReadFull(rand, pk.iv)
if err != nil {
return err
}
// Decrypt the encrypted key material with aead
pk.encryptedData = aead.Seal(nil, pk.iv, privateKeyBytes, additionalData)
case S2KSHA1, S2KCHECKSUM:
pk.iv = make([]byte, pk.cipher.blockSize())
_, err = io.ReadFull(rand, pk.iv)
if err != nil {
return err
}
cfb := cipher.NewCFBEncrypter(block, pk.iv)
if s2kType == S2KSHA1 {
h := sha1.New()
h.Write(privateKeyBytes)
sum := h.Sum(nil)
privateKeyBytes = append(privateKeyBytes, sum...)
} else {
var sum uint16
for _, b := range privateKeyBytes {
sum += uint16(b)
}
privateKeyBytes = append(privateKeyBytes, []byte{uint8(sum >> 8), uint8(sum)}...)
}
pk.encryptedData = make([]byte, len(privateKeyBytes))
cfb.XORKeyStream(pk.encryptedData, privateKeyBytes)
default:
return errors.InvalidArgumentError("invalid s2k type for encryption")
}
pk.Encrypted = true
pk.PrivateKey = nil
return err
}
// EncryptWithConfig encrypts an unencrypted private key using the passphrase and the config.
func (pk *PrivateKey) EncryptWithConfig(passphrase []byte, config *Config) error {
params, err := s2k.Generate(config.Random(), config.S2K())
if err != nil {
return err
}
// Derive an encryption key with the configured s2k function.
key := make([]byte, config.Cipher().KeySize())
s2k, err := params.Function()
if err != nil {
return err
}
s2k(key, passphrase)
s2kType := S2KSHA1
if config.AEAD() != nil {
s2kType = S2KAEAD
pk.aead = config.AEAD().Mode()
pk.cipher = config.Cipher()
key = pk.applyHKDF(key)
}
// Encrypt the private key with the derived encryption key.
return pk.encrypt(key, params, s2kType, config.Cipher(), config.Random())
}
// EncryptPrivateKeys encrypts all unencrypted keys with the given config and passphrase.
// Only derives one key from the passphrase, which is then used to encrypt each key.
func EncryptPrivateKeys(keys []*PrivateKey, passphrase []byte, config *Config) error {
params, err := s2k.Generate(config.Random(), config.S2K())
if err != nil {
return err
}
// Derive an encryption key with the configured s2k function.
encryptionKey := make([]byte, config.Cipher().KeySize())
s2k, err := params.Function()
if err != nil {
return err
}
s2k(encryptionKey, passphrase)
for _, key := range keys {
if key != nil && !key.Dummy() && !key.Encrypted {
s2kType := S2KSHA1
if config.AEAD() != nil {
s2kType = S2KAEAD
key.aead = config.AEAD().Mode()
key.cipher = config.Cipher()
derivedKey := key.applyHKDF(encryptionKey)
err = key.encrypt(derivedKey, params, s2kType, config.Cipher(), config.Random())
} else {
err = key.encrypt(encryptionKey, params, s2kType, config.Cipher(), config.Random())
}
if err != nil {
return err
}
}
}
return nil
}
// Encrypt encrypts an unencrypted private key using a passphrase.
func (pk *PrivateKey) Encrypt(passphrase []byte) error {
// Default config of private key encryption
config := &Config{
S2KConfig: &s2k.Config{
S2KMode: s2k.IteratedSaltedS2K,
S2KCount: 65536,
Hash: crypto.SHA256,
},
DefaultCipher: CipherAES256,
}
return pk.EncryptWithConfig(passphrase, config)
}
func (pk *PrivateKey) serializePrivateKey(w io.Writer) (err error) {
switch priv := pk.PrivateKey.(type) {
case *rsa.PrivateKey:
err = serializeRSAPrivateKey(w, priv)
case *dsa.PrivateKey:
err = serializeDSAPrivateKey(w, priv)
case *elgamal.PrivateKey:
err = serializeElGamalPrivateKey(w, priv)
case *ecdsa.PrivateKey:
err = serializeECDSAPrivateKey(w, priv)
case *eddsa.PrivateKey:
err = serializeEdDSAPrivateKey(w, priv)
case *ecdh.PrivateKey:
err = serializeECDHPrivateKey(w, priv)
case *x25519.PrivateKey:
err = serializeX25519PrivateKey(w, priv)
case *x448.PrivateKey:
err = serializeX448PrivateKey(w, priv)
case *ed25519.PrivateKey:
err = serializeEd25519PrivateKey(w, priv)
case *ed448.PrivateKey:
err = serializeEd448PrivateKey(w, priv)
default:
err = errors.InvalidArgumentError("unknown private key type")
}
return
}
func (pk *PrivateKey) parsePrivateKey(data []byte) (err error) {
switch pk.PublicKey.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoRSAEncryptOnly:
return pk.parseRSAPrivateKey(data)
case PubKeyAlgoDSA:
return pk.parseDSAPrivateKey(data)
case PubKeyAlgoElGamal:
return pk.parseElGamalPrivateKey(data)
case PubKeyAlgoECDSA:
return pk.parseECDSAPrivateKey(data)
case PubKeyAlgoECDH:
return pk.parseECDHPrivateKey(data)
case PubKeyAlgoEdDSA:
return pk.parseEdDSAPrivateKey(data)
case PubKeyAlgoX25519:
return pk.parseX25519PrivateKey(data)
case PubKeyAlgoX448:
return pk.parseX448PrivateKey(data)
case PubKeyAlgoEd25519:
return pk.parseEd25519PrivateKey(data)
case PubKeyAlgoEd448:
return pk.parseEd448PrivateKey(data)
default:
err = errors.StructuralError("unknown private key type")
return
}
}
func (pk *PrivateKey) parseRSAPrivateKey(data []byte) (err error) {
rsaPub := pk.PublicKey.PublicKey.(*rsa.PublicKey)
rsaPriv := new(rsa.PrivateKey)
rsaPriv.PublicKey = *rsaPub
buf := bytes.NewBuffer(data)
d := new(encoding.MPI)
if _, err := d.ReadFrom(buf); err != nil {
return err
}
p := new(encoding.MPI)
if _, err := p.ReadFrom(buf); err != nil {
return err
}
q := new(encoding.MPI)
if _, err := q.ReadFrom(buf); err != nil {
return err
}
rsaPriv.D = new(big.Int).SetBytes(d.Bytes())
rsaPriv.Primes = make([]*big.Int, 2)
rsaPriv.Primes[0] = new(big.Int).SetBytes(p.Bytes())
rsaPriv.Primes[1] = new(big.Int).SetBytes(q.Bytes())
if err := rsaPriv.Validate(); err != nil {
return errors.KeyInvalidError(err.Error())
}
rsaPriv.Precompute()
pk.PrivateKey = rsaPriv
return nil
}
func (pk *PrivateKey) parseDSAPrivateKey(data []byte) (err error) {
dsaPub := pk.PublicKey.PublicKey.(*dsa.PublicKey)
dsaPriv := new(dsa.PrivateKey)
dsaPriv.PublicKey = *dsaPub
buf := bytes.NewBuffer(data)
x := new(encoding.MPI)
if _, err := x.ReadFrom(buf); err != nil {
return err
}
dsaPriv.X = new(big.Int).SetBytes(x.Bytes())
if err := validateDSAParameters(dsaPriv); err != nil {
return err
}
pk.PrivateKey = dsaPriv
return nil
}
func (pk *PrivateKey) parseElGamalPrivateKey(data []byte) (err error) {
pub := pk.PublicKey.PublicKey.(*elgamal.PublicKey)
priv := new(elgamal.PrivateKey)
priv.PublicKey = *pub
buf := bytes.NewBuffer(data)
x := new(encoding.MPI)
if _, err := x.ReadFrom(buf); err != nil {
return err
}
priv.X = new(big.Int).SetBytes(x.Bytes())
if err := validateElGamalParameters(priv); err != nil {
return err
}
pk.PrivateKey = priv
return nil
}
func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) {
ecdsaPub := pk.PublicKey.PublicKey.(*ecdsa.PublicKey)
ecdsaPriv := ecdsa.NewPrivateKey(*ecdsaPub)
buf := bytes.NewBuffer(data)
d := new(encoding.MPI)
if _, err := d.ReadFrom(buf); err != nil {
return err
}
if err := ecdsaPriv.UnmarshalIntegerSecret(d.Bytes()); err != nil {
return err
}
if err := ecdsa.Validate(ecdsaPriv); err != nil {
return err
}
pk.PrivateKey = ecdsaPriv
return nil
}
func (pk *PrivateKey) parseECDHPrivateKey(data []byte) (err error) {
ecdhPub := pk.PublicKey.PublicKey.(*ecdh.PublicKey)
ecdhPriv := ecdh.NewPrivateKey(*ecdhPub)
buf := bytes.NewBuffer(data)
d := new(encoding.MPI)
if _, err := d.ReadFrom(buf); err != nil {
return err
}
if err := ecdhPriv.UnmarshalByteSecret(d.Bytes()); err != nil {
return err
}
if err := ecdh.Validate(ecdhPriv); err != nil {
return err
}
pk.PrivateKey = ecdhPriv
return nil
}
func (pk *PrivateKey) parseX25519PrivateKey(data []byte) (err error) {
publicKey := pk.PublicKey.PublicKey.(*x25519.PublicKey)
privateKey := x25519.NewPrivateKey(*publicKey)
privateKey.PublicKey = *publicKey
privateKey.Secret = make([]byte, x25519.KeySize)
if len(data) != x25519.KeySize {
err = errors.StructuralError("wrong x25519 key size")
return err
}
subtle.ConstantTimeCopy(1, privateKey.Secret, data)
if err = x25519.Validate(privateKey); err != nil {
return err
}
pk.PrivateKey = privateKey
return nil
}
func (pk *PrivateKey) parseX448PrivateKey(data []byte) (err error) {
publicKey := pk.PublicKey.PublicKey.(*x448.PublicKey)
privateKey := x448.NewPrivateKey(*publicKey)
privateKey.PublicKey = *publicKey
privateKey.Secret = make([]byte, x448.KeySize)
if len(data) != x448.KeySize {
err = errors.StructuralError("wrong x448 key size")
return err
}
subtle.ConstantTimeCopy(1, privateKey.Secret, data)
if err = x448.Validate(privateKey); err != nil {
return err
}
pk.PrivateKey = privateKey
return nil
}
func (pk *PrivateKey) parseEd25519PrivateKey(data []byte) (err error) {
publicKey := pk.PublicKey.PublicKey.(*ed25519.PublicKey)
privateKey := ed25519.NewPrivateKey(*publicKey)
privateKey.PublicKey = *publicKey
if len(data) != ed25519.SeedSize {
err = errors.StructuralError("wrong ed25519 key size")
return err
}
err = privateKey.UnmarshalByteSecret(data)
if err != nil {
return err
}
err = ed25519.Validate(privateKey)
if err != nil {
return err
}
pk.PrivateKey = privateKey
return nil
}
func (pk *PrivateKey) parseEd448PrivateKey(data []byte) (err error) {
publicKey := pk.PublicKey.PublicKey.(*ed448.PublicKey)
privateKey := ed448.NewPrivateKey(*publicKey)
privateKey.PublicKey = *publicKey
if len(data) != ed448.SeedSize {
err = errors.StructuralError("wrong ed448 key size")
return err
}
err = privateKey.UnmarshalByteSecret(data)
if err != nil {
return err
}
err = ed448.Validate(privateKey)
if err != nil {
return err
}
pk.PrivateKey = privateKey
return nil
}
func (pk *PrivateKey) parseEdDSAPrivateKey(data []byte) (err error) {
eddsaPub := pk.PublicKey.PublicKey.(*eddsa.PublicKey)
eddsaPriv := eddsa.NewPrivateKey(*eddsaPub)
eddsaPriv.PublicKey = *eddsaPub
buf := bytes.NewBuffer(data)
d := new(encoding.MPI)
if _, err := d.ReadFrom(buf); err != nil {
return err
}
if err = eddsaPriv.UnmarshalByteSecret(d.Bytes()); err != nil {
return err
}
if err := eddsa.Validate(eddsaPriv); err != nil {
return err
}
pk.PrivateKey = eddsaPriv
return nil
}
func (pk *PrivateKey) additionalData() ([]byte, error) {
additionalData := bytes.NewBuffer(nil)
// Write additional data prefix based on packet type
var packetByte byte
if pk.PublicKey.IsSubkey {
packetByte = 0xc7
} else {
packetByte = 0xc5
}
// Write public key to additional data
_, err := additionalData.Write([]byte{packetByte})
if err != nil {
return nil, err
}
err = pk.PublicKey.serializeWithoutHeaders(additionalData)
if err != nil {
return nil, err
}
return additionalData.Bytes(), nil
}
func (pk *PrivateKey) applyHKDF(inputKey []byte) []byte {
var packetByte byte
if pk.PublicKey.IsSubkey {
packetByte = 0xc7
} else {
packetByte = 0xc5
}
associatedData := []byte{packetByte, byte(pk.Version), byte(pk.cipher), byte(pk.aead)}
hkdfReader := hkdf.New(sha256.New, inputKey, []byte{}, associatedData)
encryptionKey := make([]byte, pk.cipher.KeySize())
_, _ = readFull(hkdfReader, encryptionKey)
return encryptionKey
}
func validateDSAParameters(priv *dsa.PrivateKey) error {
p := priv.P // group prime
q := priv.Q // subgroup order
g := priv.G // g has order q mod p
x := priv.X // secret
y := priv.Y // y == g**x mod p
one := big.NewInt(1)
// expect g, y >= 2 and g < p
if g.Cmp(one) <= 0 || y.Cmp(one) <= 0 || g.Cmp(p) > 0 {
return errors.KeyInvalidError("dsa: invalid group")
}
// expect p > q
if p.Cmp(q) <= 0 {
return errors.KeyInvalidError("dsa: invalid group prime")
}
// q should be large enough and divide p-1
pSub1 := new(big.Int).Sub(p, one)
if q.BitLen() < 150 || new(big.Int).Mod(pSub1, q).Cmp(big.NewInt(0)) != 0 {
return errors.KeyInvalidError("dsa: invalid order")
}
// confirm that g has order q mod p
if !q.ProbablyPrime(32) || new(big.Int).Exp(g, q, p).Cmp(one) != 0 {
return errors.KeyInvalidError("dsa: invalid order")
}
// check y
if new(big.Int).Exp(g, x, p).Cmp(y) != 0 {
return errors.KeyInvalidError("dsa: mismatching values")
}
return nil
}
func validateElGamalParameters(priv *elgamal.PrivateKey) error {
p := priv.P // group prime
g := priv.G // g has order p-1 mod p
x := priv.X // secret
y := priv.Y // y == g**x mod p
one := big.NewInt(1)
// Expect g, y >= 2 and g < p
if g.Cmp(one) <= 0 || y.Cmp(one) <= 0 || g.Cmp(p) > 0 {
return errors.KeyInvalidError("elgamal: invalid group")
}
if p.BitLen() < 1024 {
return errors.KeyInvalidError("elgamal: group order too small")
}
pSub1 := new(big.Int).Sub(p, one)
if new(big.Int).Exp(g, pSub1, p).Cmp(one) != 0 {
return errors.KeyInvalidError("elgamal: invalid group")
}
// Since p-1 is not prime, g might have a smaller order that divides p-1.
// We cannot confirm the exact order of g, but we make sure it is not too small.
gExpI := new(big.Int).Set(g)
i := 1
threshold := 2 << 17 // we want order > threshold
for i < threshold {
i++ // we check every order to make sure key validation is not easily bypassed by guessing y'
gExpI.Mod(new(big.Int).Mul(gExpI, g), p)
if gExpI.Cmp(one) == 0 {
return errors.KeyInvalidError("elgamal: order too small")
}
}
// Check y
if new(big.Int).Exp(g, x, p).Cmp(y) != 0 {
return errors.KeyInvalidError("elgamal: mismatching values")
}
return nil
}
package packet
// Generated with `gpg --export-secret-keys "Test Key 2"`
const privKeyRSAHex = "9501fe044cc349a8010400b70ca0010e98c090008d45d1ee8f9113bd5861fd57b88bacb7c68658747663f1e1a3b5a98f32fda6472373c024b97359cd2efc88ff60f77751adfbf6af5e615e6a1408cfad8bf0cea30b0d5f53aa27ad59089ba9b15b7ebc2777a25d7b436144027e3bcd203909f147d0e332b240cf63d3395f5dfe0df0a6c04e8655af7eacdf0011010001fe0303024a252e7d475fd445607de39a265472aa74a9320ba2dac395faa687e9e0336aeb7e9a7397e511b5afd9dc84557c80ac0f3d4d7bfec5ae16f20d41c8c84a04552a33870b930420e230e179564f6d19bb153145e76c33ae993886c388832b0fa042ddda7f133924f3854481533e0ede31d51278c0519b29abc3bf53da673e13e3e1214b52413d179d7f66deee35cac8eacb060f78379d70ef4af8607e68131ff529439668fc39c9ce6dfef8a5ac234d234802cbfb749a26107db26406213ae5c06d4673253a3cbee1fcbae58d6ab77e38d6e2c0e7c6317c48e054edadb5a40d0d48acb44643d998139a8a66bb820be1f3f80185bc777d14b5954b60effe2448a036d565c6bc0b915fcea518acdd20ab07bc1529f561c58cd044f723109b93f6fd99f876ff891d64306b5d08f48bab59f38695e9109c4dec34013ba3153488ce070268381ba923ee1eb77125b36afcb4347ec3478c8f2735b06ef17351d872e577fa95d0c397c88c71b59629a36aec"
// Generated by `gpg --export-secret-keys` followed by a manual extraction of
// the ElGamal subkey from the packets.
const privKeyElGamalHex = "9d0157044df9ee1a100400eb8e136a58ec39b582629cdadf830bc64e0a94ed8103ca8bb247b27b11b46d1d25297ef4bcc3071785ba0c0bedfe89eabc5287fcc0edf81ab5896c1c8e4b20d27d79813c7aede75320b33eaeeaa586edc00fd1036c10133e6ba0ff277245d0d59d04b2b3421b7244aca5f4a8d870c6f1c1fbff9e1c26699a860b9504f35ca1d700030503fd1ededd3b840795be6d9ccbe3c51ee42e2f39233c432b831ddd9c4e72b7025a819317e47bf94f9ee316d7273b05d5fcf2999c3a681f519b1234bbfa6d359b4752bd9c3f77d6b6456cde152464763414ca130f4e91d91041432f90620fec0e6d6b5116076c2985d5aeaae13be492b9b329efcaf7ee25120159a0a30cd976b42d7afe030302dae7eb80db744d4960c4df930d57e87fe81412eaace9f900e6c839817a614ddb75ba6603b9417c33ea7b6c93967dfa2bcff3fa3c74a5ce2c962db65b03aece14c96cbd0038fc"
// pkcs1PrivKeyHex is a PKCS#1, RSA private key.
// Generated by `openssl genrsa 1024 | openssl rsa -outform DER | xxd -p`
const pkcs1PrivKeyHex = "3082025d02010002818100e98edfa1c3b35884a54d0b36a6a603b0290fa85e49e30fa23fc94fef9c6790bc4849928607aa48d809da326fb42a969d06ad756b98b9c1a90f5d4a2b6d0ac05953c97f4da3120164a21a679793ce181c906dc01d235cc085ddcdf6ea06c389b6ab8885dfd685959e693138856a68a7e5db263337ff82a088d583a897cf2d59e9020301000102818100b6d5c9eb70b02d5369b3ee5b520a14490b5bde8a317d36f7e4c74b7460141311d1e5067735f8f01d6f5908b2b96fbd881f7a1ab9a84d82753e39e19e2d36856be960d05ac9ef8e8782ea1b6d65aee28fdfe1d61451e8cff0adfe84322f12cf455028b581cf60eb9e0e140ba5d21aeba6c2634d7c65318b9a665fc01c3191ca21024100fa5e818da3705b0fa33278bb28d4b6f6050388af2d4b75ec9375dd91ccf2e7d7068086a8b82a8f6282e4fbbdb8a7f2622eb97295249d87acea7f5f816f54d347024100eecf9406d7dc49cdfb95ab1eff4064de84c7a30f64b2798936a0d2018ba9eb52e4b636f82e96c49cc63b80b675e91e40d1b2e4017d4b9adaf33ab3d9cf1c214f024100c173704ace742c082323066226a4655226819a85304c542b9dacbeacbf5d1881ee863485fcf6f59f3a604f9b42289282067447f2b13dfeed3eab7851fc81e0550240741fc41f3fc002b382eed8730e33c5d8de40256e4accee846667f536832f711ab1d4590e7db91a8a116ac5bff3be13d3f9243ff2e976662aa9b395d907f8e9c9024046a5696c9ef882363e06c9fa4e2f5b580906452befba03f4a99d0f873697ef1f851d2226ca7934b30b7c3e80cb634a67172bbbf4781735fe3e09263e2dd723e7"
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto/dsa"
"crypto/rsa"
"crypto/sha1"
"crypto/sha256"
_ "crypto/sha512"
"encoding/binary"
"fmt"
"hash"
"io"
"math/big"
"strconv"
"time"
"github.com/ProtonMail/go-crypto/openpgp/ecdh"
"github.com/ProtonMail/go-crypto/openpgp/ecdsa"
"github.com/ProtonMail/go-crypto/openpgp/ed25519"
"github.com/ProtonMail/go-crypto/openpgp/ed448"
"github.com/ProtonMail/go-crypto/openpgp/eddsa"
"github.com/ProtonMail/go-crypto/openpgp/elgamal"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"github.com/ProtonMail/go-crypto/openpgp/internal/ecc"
"github.com/ProtonMail/go-crypto/openpgp/internal/encoding"
"github.com/ProtonMail/go-crypto/openpgp/x25519"
"github.com/ProtonMail/go-crypto/openpgp/x448"
)
// PublicKey represents an OpenPGP public key. See RFC 4880, section 5.5.2.
type PublicKey struct {
Version int
CreationTime time.Time
PubKeyAlgo PublicKeyAlgorithm
PublicKey interface{} // *rsa.PublicKey, *dsa.PublicKey, *ecdsa.PublicKey or *eddsa.PublicKey, *x25519.PublicKey, *x448.PublicKey, *ed25519.PublicKey, *ed448.PublicKey
Fingerprint []byte
KeyId uint64
IsSubkey bool
// RFC 4880 fields
n, e, p, q, g, y encoding.Field
// RFC 6637 fields
// oid contains the OID byte sequence identifying the elliptic curve used
oid encoding.Field
// kdf stores key derivation function parameters
// used for ECDH encryption. See RFC 6637, Section 9.
kdf encoding.Field
}
// UpgradeToV5 updates the version of the key to v5, and updates all necessary
// fields.
func (pk *PublicKey) UpgradeToV5() {
pk.Version = 5
pk.setFingerprintAndKeyId()
}
// UpgradeToV6 updates the version of the key to v6, and updates all necessary
// fields.
func (pk *PublicKey) UpgradeToV6() error {
pk.Version = 6
pk.setFingerprintAndKeyId()
return pk.checkV6Compatibility()
}
// signingKey provides a convenient abstraction over signature verification
// for v3 and v4 public keys.
type signingKey interface {
SerializeForHash(io.Writer) error
SerializeSignaturePrefix(io.Writer) error
serializeWithoutHeaders(io.Writer) error
}
// NewRSAPublicKey returns a PublicKey that wraps the given rsa.PublicKey.
func NewRSAPublicKey(creationTime time.Time, pub *rsa.PublicKey) *PublicKey {
pk := &PublicKey{
Version: 4,
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoRSA,
PublicKey: pub,
n: new(encoding.MPI).SetBig(pub.N),
e: new(encoding.MPI).SetBig(big.NewInt(int64(pub.E))),
}
pk.setFingerprintAndKeyId()
return pk
}
// NewDSAPublicKey returns a PublicKey that wraps the given dsa.PublicKey.
func NewDSAPublicKey(creationTime time.Time, pub *dsa.PublicKey) *PublicKey {
pk := &PublicKey{
Version: 4,
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoDSA,
PublicKey: pub,
p: new(encoding.MPI).SetBig(pub.P),
q: new(encoding.MPI).SetBig(pub.Q),
g: new(encoding.MPI).SetBig(pub.G),
y: new(encoding.MPI).SetBig(pub.Y),
}
pk.setFingerprintAndKeyId()
return pk
}
// NewElGamalPublicKey returns a PublicKey that wraps the given elgamal.PublicKey.
func NewElGamalPublicKey(creationTime time.Time, pub *elgamal.PublicKey) *PublicKey {
pk := &PublicKey{
Version: 4,
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoElGamal,
PublicKey: pub,
p: new(encoding.MPI).SetBig(pub.P),
g: new(encoding.MPI).SetBig(pub.G),
y: new(encoding.MPI).SetBig(pub.Y),
}
pk.setFingerprintAndKeyId()
return pk
}
func NewECDSAPublicKey(creationTime time.Time, pub *ecdsa.PublicKey) *PublicKey {
pk := &PublicKey{
Version: 4,
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoECDSA,
PublicKey: pub,
p: encoding.NewMPI(pub.MarshalPoint()),
}
curveInfo := ecc.FindByCurve(pub.GetCurve())
if curveInfo == nil {
panic("unknown elliptic curve")
}
pk.oid = curveInfo.Oid
pk.setFingerprintAndKeyId()
return pk
}
func NewECDHPublicKey(creationTime time.Time, pub *ecdh.PublicKey) *PublicKey {
var pk *PublicKey
var kdf = encoding.NewOID([]byte{0x1, pub.Hash.Id(), pub.Cipher.Id()})
pk = &PublicKey{
Version: 4,
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoECDH,
PublicKey: pub,
p: encoding.NewMPI(pub.MarshalPoint()),
kdf: kdf,
}
curveInfo := ecc.FindByCurve(pub.GetCurve())
if curveInfo == nil {
panic("unknown elliptic curve")
}
pk.oid = curveInfo.Oid
pk.setFingerprintAndKeyId()
return pk
}
func NewEdDSAPublicKey(creationTime time.Time, pub *eddsa.PublicKey) *PublicKey {
curveInfo := ecc.FindByCurve(pub.GetCurve())
pk := &PublicKey{
Version: 4,
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoEdDSA,
PublicKey: pub,
oid: curveInfo.Oid,
// Native point format, see draft-koch-eddsa-for-openpgp-04, Appendix B
p: encoding.NewMPI(pub.MarshalPoint()),
}
pk.setFingerprintAndKeyId()
return pk
}
func NewX25519PublicKey(creationTime time.Time, pub *x25519.PublicKey) *PublicKey {
pk := &PublicKey{
Version: 4,
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoX25519,
PublicKey: pub,
}
pk.setFingerprintAndKeyId()
return pk
}
func NewX448PublicKey(creationTime time.Time, pub *x448.PublicKey) *PublicKey {
pk := &PublicKey{
Version: 4,
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoX448,
PublicKey: pub,
}
pk.setFingerprintAndKeyId()
return pk
}
func NewEd25519PublicKey(creationTime time.Time, pub *ed25519.PublicKey) *PublicKey {
pk := &PublicKey{
Version: 4,
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoEd25519,
PublicKey: pub,
}
pk.setFingerprintAndKeyId()
return pk
}
func NewEd448PublicKey(creationTime time.Time, pub *ed448.PublicKey) *PublicKey {
pk := &PublicKey{
Version: 4,
CreationTime: creationTime,
PubKeyAlgo: PubKeyAlgoEd448,
PublicKey: pub,
}
pk.setFingerprintAndKeyId()
return pk
}
func (pk *PublicKey) parse(r io.Reader) (err error) {
// RFC 4880, section 5.5.2
var buf [6]byte
_, err = readFull(r, buf[:])
if err != nil {
return
}
pk.Version = int(buf[0])
if pk.Version != 4 && pk.Version != 5 && pk.Version != 6 {
return errors.UnsupportedError("public key version " + strconv.Itoa(int(buf[0])))
}
if V5Disabled && pk.Version == 5 {
return errors.UnsupportedError("support for parsing v5 entities is disabled; build with `-tags v5` if needed")
}
if pk.Version >= 5 {
// Read the four-octet scalar octet count
// The count is not used in this implementation
var n [4]byte
_, err = readFull(r, n[:])
if err != nil {
return
}
}
pk.CreationTime = time.Unix(int64(uint32(buf[1])<<24|uint32(buf[2])<<16|uint32(buf[3])<<8|uint32(buf[4])), 0)
pk.PubKeyAlgo = PublicKeyAlgorithm(buf[5])
// Ignore four-ocet length
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
err = pk.parseRSA(r)
case PubKeyAlgoDSA:
err = pk.parseDSA(r)
case PubKeyAlgoElGamal:
err = pk.parseElGamal(r)
case PubKeyAlgoECDSA:
err = pk.parseECDSA(r)
case PubKeyAlgoECDH:
err = pk.parseECDH(r)
case PubKeyAlgoEdDSA:
err = pk.parseEdDSA(r)
case PubKeyAlgoX25519:
err = pk.parseX25519(r)
case PubKeyAlgoX448:
err = pk.parseX448(r)
case PubKeyAlgoEd25519:
err = pk.parseEd25519(r)
case PubKeyAlgoEd448:
err = pk.parseEd448(r)
default:
err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo)))
}
if err != nil {
return
}
pk.setFingerprintAndKeyId()
return
}
func (pk *PublicKey) setFingerprintAndKeyId() {
// RFC 4880, section 12.2
if pk.Version >= 5 {
fingerprint := sha256.New()
if err := pk.SerializeForHash(fingerprint); err != nil {
// Should not happen for a hash.
panic(err)
}
pk.Fingerprint = make([]byte, 32)
copy(pk.Fingerprint, fingerprint.Sum(nil))
pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[:8])
} else {
fingerprint := sha1.New()
if err := pk.SerializeForHash(fingerprint); err != nil {
// Should not happen for a hash.
panic(err)
}
pk.Fingerprint = make([]byte, 20)
copy(pk.Fingerprint, fingerprint.Sum(nil))
pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20])
}
}
func (pk *PublicKey) checkV6Compatibility() error {
// Implementations MUST NOT accept or generate version 6 key material using the deprecated OIDs.
switch pk.PubKeyAlgo {
case PubKeyAlgoECDH:
curveInfo := ecc.FindByOid(pk.oid)
if curveInfo == nil {
return errors.UnsupportedError(fmt.Sprintf("unknown oid: %x", pk.oid))
}
if curveInfo.GenName == ecc.Curve25519GenName {
return errors.StructuralError("cannot generate v6 key with deprecated OID: Curve25519Legacy")
}
case PubKeyAlgoEdDSA:
return errors.StructuralError("cannot generate v6 key with deprecated algorithm: EdDSALegacy")
}
return nil
}
// parseRSA parses RSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKey) parseRSA(r io.Reader) (err error) {
pk.n = new(encoding.MPI)
if _, err = pk.n.ReadFrom(r); err != nil {
return
}
pk.e = new(encoding.MPI)
if _, err = pk.e.ReadFrom(r); err != nil {
return
}
if len(pk.e.Bytes()) > 3 {
err = errors.UnsupportedError("large public exponent")
return
}
rsa := &rsa.PublicKey{
N: new(big.Int).SetBytes(pk.n.Bytes()),
E: 0,
}
for i := 0; i < len(pk.e.Bytes()); i++ {
rsa.E <<= 8
rsa.E |= int(pk.e.Bytes()[i])
}
pk.PublicKey = rsa
return
}
// parseDSA parses DSA public key material from the given Reader. See RFC 4880,
// section 5.5.2.
func (pk *PublicKey) parseDSA(r io.Reader) (err error) {
pk.p = new(encoding.MPI)
if _, err = pk.p.ReadFrom(r); err != nil {
return
}
pk.q = new(encoding.MPI)
if _, err = pk.q.ReadFrom(r); err != nil {
return
}
pk.g = new(encoding.MPI)
if _, err = pk.g.ReadFrom(r); err != nil {
return
}
pk.y = new(encoding.MPI)
if _, err = pk.y.ReadFrom(r); err != nil {
return
}
dsa := new(dsa.PublicKey)
dsa.P = new(big.Int).SetBytes(pk.p.Bytes())
dsa.Q = new(big.Int).SetBytes(pk.q.Bytes())
dsa.G = new(big.Int).SetBytes(pk.g.Bytes())
dsa.Y = new(big.Int).SetBytes(pk.y.Bytes())
pk.PublicKey = dsa
return
}
// parseElGamal parses ElGamal public key material from the given Reader. See
// RFC 4880, section 5.5.2.
func (pk *PublicKey) parseElGamal(r io.Reader) (err error) {
pk.p = new(encoding.MPI)
if _, err = pk.p.ReadFrom(r); err != nil {
return
}
pk.g = new(encoding.MPI)
if _, err = pk.g.ReadFrom(r); err != nil {
return
}
pk.y = new(encoding.MPI)
if _, err = pk.y.ReadFrom(r); err != nil {
return
}
elgamal := new(elgamal.PublicKey)
elgamal.P = new(big.Int).SetBytes(pk.p.Bytes())
elgamal.G = new(big.Int).SetBytes(pk.g.Bytes())
elgamal.Y = new(big.Int).SetBytes(pk.y.Bytes())
pk.PublicKey = elgamal
return
}
// parseECDSA parses ECDSA public key material from the given Reader. See
// RFC 6637, Section 9.
func (pk *PublicKey) parseECDSA(r io.Reader) (err error) {
pk.oid = new(encoding.OID)
if _, err = pk.oid.ReadFrom(r); err != nil {
return
}
curveInfo := ecc.FindByOid(pk.oid)
if curveInfo == nil {
return errors.UnsupportedError(fmt.Sprintf("unknown oid: %x", pk.oid))
}
pk.p = new(encoding.MPI)
if _, err = pk.p.ReadFrom(r); err != nil {
return
}
c, ok := curveInfo.Curve.(ecc.ECDSACurve)
if !ok {
return errors.UnsupportedError(fmt.Sprintf("unsupported oid: %x", pk.oid))
}
ecdsaKey := ecdsa.NewPublicKey(c)
err = ecdsaKey.UnmarshalPoint(pk.p.Bytes())
pk.PublicKey = ecdsaKey
return
}
// parseECDH parses ECDH public key material from the given Reader. See
// RFC 6637, Section 9.
func (pk *PublicKey) parseECDH(r io.Reader) (err error) {
pk.oid = new(encoding.OID)
if _, err = pk.oid.ReadFrom(r); err != nil {
return
}
curveInfo := ecc.FindByOid(pk.oid)
if curveInfo == nil {
return errors.UnsupportedError(fmt.Sprintf("unknown oid: %x", pk.oid))
}
if pk.Version == 6 && curveInfo.GenName == ecc.Curve25519GenName {
// Implementations MUST NOT accept or generate version 6 key material using the deprecated OIDs.
return errors.StructuralError("cannot read v6 key with deprecated OID: Curve25519Legacy")
}
pk.p = new(encoding.MPI)
if _, err = pk.p.ReadFrom(r); err != nil {
return
}
pk.kdf = new(encoding.OID)
if _, err = pk.kdf.ReadFrom(r); err != nil {
return
}
c, ok := curveInfo.Curve.(ecc.ECDHCurve)
if !ok {
return errors.UnsupportedError(fmt.Sprintf("unsupported oid: %x", pk.oid))
}
if kdfLen := len(pk.kdf.Bytes()); kdfLen < 3 {
return errors.UnsupportedError("unsupported ECDH KDF length: " + strconv.Itoa(kdfLen))
}
if reserved := pk.kdf.Bytes()[0]; reserved != 0x01 {
return errors.UnsupportedError("unsupported KDF reserved field: " + strconv.Itoa(int(reserved)))
}
kdfHash, ok := algorithm.HashById[pk.kdf.Bytes()[1]]
if !ok {
return errors.UnsupportedError("unsupported ECDH KDF hash: " + strconv.Itoa(int(pk.kdf.Bytes()[1])))
}
kdfCipher, ok := algorithm.CipherById[pk.kdf.Bytes()[2]]
if !ok {
return errors.UnsupportedError("unsupported ECDH KDF cipher: " + strconv.Itoa(int(pk.kdf.Bytes()[2])))
}
ecdhKey := ecdh.NewPublicKey(c, kdfHash, kdfCipher)
err = ecdhKey.UnmarshalPoint(pk.p.Bytes())
pk.PublicKey = ecdhKey
return
}
func (pk *PublicKey) parseEdDSA(r io.Reader) (err error) {
if pk.Version == 6 {
// Implementations MUST NOT accept or generate version 6 key material using the deprecated OIDs.
return errors.StructuralError("cannot generate v6 key with deprecated algorithm: EdDSALegacy")
}
pk.oid = new(encoding.OID)
if _, err = pk.oid.ReadFrom(r); err != nil {
return
}
curveInfo := ecc.FindByOid(pk.oid)
if curveInfo == nil {
return errors.UnsupportedError(fmt.Sprintf("unknown oid: %x", pk.oid))
}
c, ok := curveInfo.Curve.(ecc.EdDSACurve)
if !ok {
return errors.UnsupportedError(fmt.Sprintf("unsupported oid: %x", pk.oid))
}
pk.p = new(encoding.MPI)
if _, err = pk.p.ReadFrom(r); err != nil {
return
}
if len(pk.p.Bytes()) == 0 {
return errors.StructuralError("empty EdDSA public key")
}
pub := eddsa.NewPublicKey(c)
switch flag := pk.p.Bytes()[0]; flag {
case 0x04:
// TODO: see _grcy_ecc_eddsa_ensure_compact in grcypt
return errors.UnsupportedError("unsupported EdDSA compression: " + strconv.Itoa(int(flag)))
case 0x40:
err = pub.UnmarshalPoint(pk.p.Bytes())
default:
return errors.UnsupportedError("unsupported EdDSA compression: " + strconv.Itoa(int(flag)))
}
pk.PublicKey = pub
return
}
func (pk *PublicKey) parseX25519(r io.Reader) (err error) {
point := make([]byte, x25519.KeySize)
_, err = io.ReadFull(r, point)
if err != nil {
return
}
pub := &x25519.PublicKey{
Point: point,
}
pk.PublicKey = pub
return
}
func (pk *PublicKey) parseX448(r io.Reader) (err error) {
point := make([]byte, x448.KeySize)
_, err = io.ReadFull(r, point)
if err != nil {
return
}
pub := &x448.PublicKey{
Point: point,
}
pk.PublicKey = pub
return
}
func (pk *PublicKey) parseEd25519(r io.Reader) (err error) {
point := make([]byte, ed25519.PublicKeySize)
_, err = io.ReadFull(r, point)
if err != nil {
return
}
pub := &ed25519.PublicKey{
Point: point,
}
pk.PublicKey = pub
return
}
func (pk *PublicKey) parseEd448(r io.Reader) (err error) {
point := make([]byte, ed448.PublicKeySize)
_, err = io.ReadFull(r, point)
if err != nil {
return
}
pub := &ed448.PublicKey{
Point: point,
}
pk.PublicKey = pub
return
}
// SerializeForHash serializes the PublicKey to w with the special packet
// header format needed for hashing.
func (pk *PublicKey) SerializeForHash(w io.Writer) error {
if err := pk.SerializeSignaturePrefix(w); err != nil {
return err
}
return pk.serializeWithoutHeaders(w)
}
// SerializeSignaturePrefix writes the prefix for this public key to the given Writer.
// The prefix is used when calculating a signature over this public key. See
// RFC 4880, section 5.2.4.
func (pk *PublicKey) SerializeSignaturePrefix(w io.Writer) error {
var pLength = pk.algorithmSpecificByteCount()
// version, timestamp, algorithm
pLength += versionSize + timestampSize + algorithmSize
if pk.Version >= 5 {
// key octet count (4).
pLength += 4
_, err := w.Write([]byte{
// When a v4 signature is made over a key, the hash data starts with the octet 0x99, followed by a two-octet length
// of the key, and then the body of the key packet. When a v6 signature is made over a key, the hash data starts
// with the salt, then octet 0x9B, followed by a four-octet length of the key, and then the body of the key packet.
0x95 + byte(pk.Version),
byte(pLength >> 24),
byte(pLength >> 16),
byte(pLength >> 8),
byte(pLength),
})
return err
}
if _, err := w.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)}); err != nil {
return err
}
return nil
}
func (pk *PublicKey) Serialize(w io.Writer) (err error) {
length := uint32(versionSize + timestampSize + algorithmSize) // 6 byte header
length += pk.algorithmSpecificByteCount()
if pk.Version >= 5 {
length += 4 // octet key count
}
packetType := packetTypePublicKey
if pk.IsSubkey {
packetType = packetTypePublicSubkey
}
err = serializeHeader(w, packetType, int(length))
if err != nil {
return
}
return pk.serializeWithoutHeaders(w)
}
func (pk *PublicKey) algorithmSpecificByteCount() uint32 {
length := uint32(0)
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
length += uint32(pk.n.EncodedLength())
length += uint32(pk.e.EncodedLength())
case PubKeyAlgoDSA:
length += uint32(pk.p.EncodedLength())
length += uint32(pk.q.EncodedLength())
length += uint32(pk.g.EncodedLength())
length += uint32(pk.y.EncodedLength())
case PubKeyAlgoElGamal:
length += uint32(pk.p.EncodedLength())
length += uint32(pk.g.EncodedLength())
length += uint32(pk.y.EncodedLength())
case PubKeyAlgoECDSA:
length += uint32(pk.oid.EncodedLength())
length += uint32(pk.p.EncodedLength())
case PubKeyAlgoECDH:
length += uint32(pk.oid.EncodedLength())
length += uint32(pk.p.EncodedLength())
length += uint32(pk.kdf.EncodedLength())
case PubKeyAlgoEdDSA:
length += uint32(pk.oid.EncodedLength())
length += uint32(pk.p.EncodedLength())
case PubKeyAlgoX25519:
length += x25519.KeySize
case PubKeyAlgoX448:
length += x448.KeySize
case PubKeyAlgoEd25519:
length += ed25519.PublicKeySize
case PubKeyAlgoEd448:
length += ed448.PublicKeySize
default:
panic("unknown public key algorithm")
}
return length
}
// serializeWithoutHeaders marshals the PublicKey to w in the form of an
// OpenPGP public key packet, not including the packet header.
func (pk *PublicKey) serializeWithoutHeaders(w io.Writer) (err error) {
t := uint32(pk.CreationTime.Unix())
if _, err = w.Write([]byte{
byte(pk.Version),
byte(t >> 24), byte(t >> 16), byte(t >> 8), byte(t),
byte(pk.PubKeyAlgo),
}); err != nil {
return
}
if pk.Version >= 5 {
n := pk.algorithmSpecificByteCount()
if _, err = w.Write([]byte{
byte(n >> 24), byte(n >> 16), byte(n >> 8), byte(n),
}); err != nil {
return
}
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
if _, err = w.Write(pk.n.EncodedBytes()); err != nil {
return
}
_, err = w.Write(pk.e.EncodedBytes())
return
case PubKeyAlgoDSA:
if _, err = w.Write(pk.p.EncodedBytes()); err != nil {
return
}
if _, err = w.Write(pk.q.EncodedBytes()); err != nil {
return
}
if _, err = w.Write(pk.g.EncodedBytes()); err != nil {
return
}
_, err = w.Write(pk.y.EncodedBytes())
return
case PubKeyAlgoElGamal:
if _, err = w.Write(pk.p.EncodedBytes()); err != nil {
return
}
if _, err = w.Write(pk.g.EncodedBytes()); err != nil {
return
}
_, err = w.Write(pk.y.EncodedBytes())
return
case PubKeyAlgoECDSA:
if _, err = w.Write(pk.oid.EncodedBytes()); err != nil {
return
}
_, err = w.Write(pk.p.EncodedBytes())
return
case PubKeyAlgoECDH:
if _, err = w.Write(pk.oid.EncodedBytes()); err != nil {
return
}
if _, err = w.Write(pk.p.EncodedBytes()); err != nil {
return
}
_, err = w.Write(pk.kdf.EncodedBytes())
return
case PubKeyAlgoEdDSA:
if _, err = w.Write(pk.oid.EncodedBytes()); err != nil {
return
}
_, err = w.Write(pk.p.EncodedBytes())
return
case PubKeyAlgoX25519:
publicKey := pk.PublicKey.(*x25519.PublicKey)
_, err = w.Write(publicKey.Point)
return
case PubKeyAlgoX448:
publicKey := pk.PublicKey.(*x448.PublicKey)
_, err = w.Write(publicKey.Point)
return
case PubKeyAlgoEd25519:
publicKey := pk.PublicKey.(*ed25519.PublicKey)
_, err = w.Write(publicKey.Point)
return
case PubKeyAlgoEd448:
publicKey := pk.PublicKey.(*ed448.PublicKey)
_, err = w.Write(publicKey.Point)
return
}
return errors.InvalidArgumentError("bad public-key algorithm")
}
// CanSign returns true iff this public key can generate signatures
func (pk *PublicKey) CanSign() bool {
return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly && pk.PubKeyAlgo != PubKeyAlgoElGamal && pk.PubKeyAlgo != PubKeyAlgoECDH
}
// VerifyHashTag returns nil iff sig appears to be a plausible signature of the data
// hashed into signed, based solely on its HashTag. signed is mutated by this call.
func VerifyHashTag(signed hash.Hash, sig *Signature) (err error) {
if sig.Version == 5 && (sig.SigType == 0x00 || sig.SigType == 0x01) {
sig.AddMetadataToHashSuffix()
}
signed.Write(sig.HashSuffix)
hashBytes := signed.Sum(nil)
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
return errors.SignatureError("hash tag doesn't match")
}
return nil
}
// VerifySignature returns nil iff sig is a valid signature, made by this
// public key, of the data hashed into signed. signed is mutated by this call.
func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err error) {
if !pk.CanSign() {
return errors.InvalidArgumentError("public key cannot generate signatures")
}
if sig.Version == 5 && (sig.SigType == 0x00 || sig.SigType == 0x01) {
sig.AddMetadataToHashSuffix()
}
signed.Write(sig.HashSuffix)
hashBytes := signed.Sum(nil)
// see discussion https://github.com/ProtonMail/go-crypto/issues/107
if sig.Version >= 5 && (hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1]) {
return errors.SignatureError("hash tag doesn't match")
}
if pk.PubKeyAlgo != sig.PubKeyAlgo {
return errors.InvalidArgumentError("public key and signature use different algorithms")
}
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
rsaPublicKey, _ := pk.PublicKey.(*rsa.PublicKey)
err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, padToKeySize(rsaPublicKey, sig.RSASignature.Bytes()))
if err != nil {
return errors.SignatureError("RSA verification failure")
}
return nil
case PubKeyAlgoDSA:
dsaPublicKey, _ := pk.PublicKey.(*dsa.PublicKey)
// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8
if len(hashBytes) > subgroupSize {
hashBytes = hashBytes[:subgroupSize]
}
if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.Bytes()), new(big.Int).SetBytes(sig.DSASigS.Bytes())) {
return errors.SignatureError("DSA verification failure")
}
return nil
case PubKeyAlgoECDSA:
ecdsaPublicKey := pk.PublicKey.(*ecdsa.PublicKey)
if !ecdsa.Verify(ecdsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.ECDSASigR.Bytes()), new(big.Int).SetBytes(sig.ECDSASigS.Bytes())) {
return errors.SignatureError("ECDSA verification failure")
}
return nil
case PubKeyAlgoEdDSA:
eddsaPublicKey := pk.PublicKey.(*eddsa.PublicKey)
if !eddsa.Verify(eddsaPublicKey, hashBytes, sig.EdDSASigR.Bytes(), sig.EdDSASigS.Bytes()) {
return errors.SignatureError("EdDSA verification failure")
}
return nil
case PubKeyAlgoEd25519:
ed25519PublicKey := pk.PublicKey.(*ed25519.PublicKey)
if !ed25519.Verify(ed25519PublicKey, hashBytes, sig.EdSig) {
return errors.SignatureError("Ed25519 verification failure")
}
return nil
case PubKeyAlgoEd448:
ed448PublicKey := pk.PublicKey.(*ed448.PublicKey)
if !ed448.Verify(ed448PublicKey, hashBytes, sig.EdSig) {
return errors.SignatureError("ed448 verification failure")
}
return nil
default:
return errors.SignatureError("Unsupported public key algorithm used in signature")
}
}
// keySignatureHash returns a Hash of the message that needs to be signed for
// pk to assert a subkey relationship to signed.
func keySignatureHash(pk, signed signingKey, hashFunc hash.Hash) (h hash.Hash, err error) {
h = hashFunc
// RFC 4880, section 5.2.4
err = pk.SerializeForHash(h)
if err != nil {
return nil, err
}
err = signed.SerializeForHash(h)
return
}
// VerifyKeyHashTag returns nil iff sig appears to be a plausible signature over this
// primary key and subkey, based solely on its HashTag.
func (pk *PublicKey) VerifyKeyHashTag(signed *PublicKey, sig *Signature) error {
preparedHash, err := sig.PrepareVerify()
if err != nil {
return err
}
h, err := keySignatureHash(pk, signed, preparedHash)
if err != nil {
return err
}
return VerifyHashTag(h, sig)
}
// VerifyKeySignature returns nil iff sig is a valid signature, made by this
// public key, of signed.
func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) error {
preparedHash, err := sig.PrepareVerify()
if err != nil {
return err
}
h, err := keySignatureHash(pk, signed, preparedHash)
if err != nil {
return err
}
if err = pk.VerifySignature(h, sig); err != nil {
return err
}
if sig.FlagSign {
// Signing subkeys must be cross-signed. See
// https://www.gnupg.org/faq/subkey-cross-certify.html.
if sig.EmbeddedSignature == nil {
return errors.StructuralError("signing subkey is missing cross-signature")
}
preparedHashEmbedded, err := sig.EmbeddedSignature.PrepareVerify()
if err != nil {
return err
}
// Verify the cross-signature. This is calculated over the same
// data as the main signature, so we cannot just recursively
// call signed.VerifyKeySignature(...)
if h, err = keySignatureHash(pk, signed, preparedHashEmbedded); err != nil {
return errors.StructuralError("error while hashing for cross-signature: " + err.Error())
}
if err := signed.VerifySignature(h, sig.EmbeddedSignature); err != nil {
return errors.StructuralError("error while verifying cross-signature: " + err.Error())
}
}
return nil
}
func keyRevocationHash(pk signingKey, hashFunc hash.Hash) (err error) {
return pk.SerializeForHash(hashFunc)
}
// VerifyRevocationHashTag returns nil iff sig appears to be a plausible signature
// over this public key, based solely on its HashTag.
func (pk *PublicKey) VerifyRevocationHashTag(sig *Signature) (err error) {
preparedHash, err := sig.PrepareVerify()
if err != nil {
return err
}
if err = keyRevocationHash(pk, preparedHash); err != nil {
return err
}
return VerifyHashTag(preparedHash, sig)
}
// VerifyRevocationSignature returns nil iff sig is a valid signature, made by this
// public key.
func (pk *PublicKey) VerifyRevocationSignature(sig *Signature) (err error) {
preparedHash, err := sig.PrepareVerify()
if err != nil {
return err
}
if err = keyRevocationHash(pk, preparedHash); err != nil {
return err
}
return pk.VerifySignature(preparedHash, sig)
}
// VerifySubkeyRevocationSignature returns nil iff sig is a valid subkey revocation signature,
// made by this public key, of signed.
func (pk *PublicKey) VerifySubkeyRevocationSignature(sig *Signature, signed *PublicKey) (err error) {
preparedHash, err := sig.PrepareVerify()
if err != nil {
return err
}
h, err := keySignatureHash(pk, signed, preparedHash)
if err != nil {
return err
}
return pk.VerifySignature(h, sig)
}
// userIdSignatureHash returns a Hash of the message that needs to be signed
// to assert that pk is a valid key for id.
func userIdSignatureHash(id string, pk *PublicKey, h hash.Hash) (err error) {
// RFC 4880, section 5.2.4
if err := pk.SerializeSignaturePrefix(h); err != nil {
return err
}
if err := pk.serializeWithoutHeaders(h); err != nil {
return err
}
var buf [5]byte
buf[0] = 0xb4
buf[1] = byte(len(id) >> 24)
buf[2] = byte(len(id) >> 16)
buf[3] = byte(len(id) >> 8)
buf[4] = byte(len(id))
h.Write(buf[:])
h.Write([]byte(id))
return nil
}
// directKeySignatureHash returns a Hash of the message that needs to be signed.
func directKeySignatureHash(pk *PublicKey, h hash.Hash) (err error) {
return pk.SerializeForHash(h)
}
// VerifyUserIdHashTag returns nil iff sig appears to be a plausible signature over this
// public key and UserId, based solely on its HashTag
func (pk *PublicKey) VerifyUserIdHashTag(id string, sig *Signature) (err error) {
preparedHash, err := sig.PrepareVerify()
if err != nil {
return err
}
err = userIdSignatureHash(id, pk, preparedHash)
if err != nil {
return err
}
return VerifyHashTag(preparedHash, sig)
}
// VerifyUserIdSignature returns nil iff sig is a valid signature, made by this
// public key, that id is the identity of pub.
func (pk *PublicKey) VerifyUserIdSignature(id string, pub *PublicKey, sig *Signature) (err error) {
h, err := sig.PrepareVerify()
if err != nil {
return err
}
if err := userIdSignatureHash(id, pub, h); err != nil {
return err
}
return pk.VerifySignature(h, sig)
}
// VerifyDirectKeySignature returns nil iff sig is a valid signature, made by this
// public key.
func (pk *PublicKey) VerifyDirectKeySignature(sig *Signature) (err error) {
h, err := sig.PrepareVerify()
if err != nil {
return err
}
if err := directKeySignatureHash(pk, h); err != nil {
return err
}
return pk.VerifySignature(h, sig)
}
// KeyIdString returns the public key's fingerprint in capital hex
// (e.g. "6C7EE1B8621CC013").
func (pk *PublicKey) KeyIdString() string {
return fmt.Sprintf("%X", pk.Fingerprint[12:20])
}
// KeyIdShortString returns the short form of public key's fingerprint
// in capital hex, as shown by gpg --list-keys (e.g. "621CC013").
func (pk *PublicKey) KeyIdShortString() string {
return fmt.Sprintf("%X", pk.Fingerprint[16:20])
}
// BitLength returns the bit length for the given public key.
func (pk *PublicKey) BitLength() (bitLength uint16, err error) {
switch pk.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
bitLength = pk.n.BitLength()
case PubKeyAlgoDSA:
bitLength = pk.p.BitLength()
case PubKeyAlgoElGamal:
bitLength = pk.p.BitLength()
case PubKeyAlgoECDSA:
bitLength = pk.p.BitLength()
case PubKeyAlgoECDH:
bitLength = pk.p.BitLength()
case PubKeyAlgoEdDSA:
bitLength = pk.p.BitLength()
case PubKeyAlgoX25519:
bitLength = x25519.KeySize * 8
case PubKeyAlgoX448:
bitLength = x448.KeySize * 8
case PubKeyAlgoEd25519:
bitLength = ed25519.PublicKeySize * 8
case PubKeyAlgoEd448:
bitLength = ed448.PublicKeySize * 8
default:
err = errors.InvalidArgumentError("bad public-key algorithm")
}
return
}
// Curve returns the used elliptic curve of this public key.
// Returns an error if no elliptic curve is used.
func (pk *PublicKey) Curve() (curve Curve, err error) {
switch pk.PubKeyAlgo {
case PubKeyAlgoECDSA, PubKeyAlgoECDH, PubKeyAlgoEdDSA:
curveInfo := ecc.FindByOid(pk.oid)
if curveInfo == nil {
return "", errors.UnsupportedError(fmt.Sprintf("unknown oid: %x", pk.oid))
}
curve = Curve(curveInfo.GenName)
case PubKeyAlgoEd25519, PubKeyAlgoX25519:
curve = Curve25519
case PubKeyAlgoEd448, PubKeyAlgoX448:
curve = Curve448
default:
err = errors.InvalidArgumentError("public key does not operate with an elliptic curve")
}
return
}
// KeyExpired returns whether sig is a self-signature of a key that has
// expired or is created in the future.
func (pk *PublicKey) KeyExpired(sig *Signature, currentTime time.Time) bool {
if pk.CreationTime.Unix() > currentTime.Unix() {
return true
}
if sig.KeyLifetimeSecs == nil || *sig.KeyLifetimeSecs == 0 {
return false
}
expiry := pk.CreationTime.Add(time.Duration(*sig.KeyLifetimeSecs) * time.Second)
return currentTime.Unix() > expiry.Unix()
}
package packet
const rsaFingerprintHex = "5fb74b1d03b1e3cb31bc2f8aa34d7e18c20c31bb"
const rsaPkDataHex = "988d044d3c5c10010400b1d13382944bd5aba23a4312968b5095d14f947f600eb478e14a6fcb16b0e0cac764884909c020bc495cfcc39a935387c661507bdb236a0612fb582cac3af9b29cc2c8c70090616c41b662f4da4c1201e195472eb7f4ae1ccbcbf9940fe21d985e379a5563dde5b9a23d35f1cfaa5790da3b79db26f23695107bfaca8e7b5bcd0011010001"
const dsaFingerprintHex = "eece4c094db002103714c63c8e8fbe54062f19ed"
const dsaPkDataHex = "9901a2044d432f89110400cd581334f0d7a1e1bdc8b9d6d8c0baf68793632735d2bb0903224cbaa1dfbf35a60ee7a13b92643421e1eb41aa8d79bea19a115a677f6b8ba3c7818ce53a6c2a24a1608bd8b8d6e55c5090cbde09dd26e356267465ae25e69ec8bdd57c7bbb2623e4d73336f73a0a9098f7f16da2e25252130fd694c0e8070c55a812a423ae7f00a0ebf50e70c2f19c3520a551bd4b08d30f23530d3d03ff7d0bf4a53a64a09dc5e6e6e35854b7d70c882b0c60293401958b1bd9e40abec3ea05ba87cf64899299d4bd6aa7f459c201d3fbbd6c82004bdc5e8a9eb8082d12054cc90fa9d4ec251a843236a588bf49552441817436c4f43326966fe85447d4e6d0acf8fa1ef0f014730770603ad7634c3088dc52501c237328417c31c89ed70400b2f1a98b0bf42f11fefc430704bebbaa41d9f355600c3facee1e490f64208e0e094ea55e3a598a219a58500bf78ac677b670a14f4e47e9cf8eab4f368cc1ddcaa18cc59309d4cc62dd4f680e73e6cc3e1ce87a84d0925efbcb26c575c093fc42eecf45135fabf6403a25c2016e1774c0484e440a18319072c617cc97ac0a3bb0"
const ecdsaFingerprintHex = "9892270b38b8980b05c8d56d43fe956c542ca00b"
const ecdsaPkDataHex = "9893045071c29413052b8104002304230401f4867769cedfa52c325018896245443968e52e51d0c2df8d939949cb5b330f2921711fbee1c9b9dddb95d15cb0255e99badeddda7cc23d9ddcaacbc290969b9f24019375d61c2e4e3b36953a28d8b2bc95f78c3f1d592fb24499be348656a7b17e3963187b4361afe497bc5f9f81213f04069f8e1fb9e6a6290ae295ca1a92b894396cb4"
const ecdhFingerprintHex = "722354df2475a42164d1d49faa8b938f9a201946"
const ecdhPkDataHex = "b90073044d53059212052b810400220303042faa84024a20b6735c4897efa5bfb41bf85b7eefeab5ca0cb9ffc8ea04a46acb25534a577694f9e25340a4ab5223a9dd1eda530c8aa2e6718db10d7e672558c7736fe09369ea5739a2a3554bf16d41faa50562f11c6d39bbd5dffb6b9a9ec91803010909"
const eddsaFingerprintHex = "b2d5e5ec0e6deca6bc8eeeb00907e75e1dd99ad8"
const eddsaPkDataHex = "98330456e2132b16092b06010401da470f01010740bbda39266affa511a8c2d02edf690fb784b0499c4406185811a163539ef11dc1b41d74657374696e67203c74657374696e674074657374696e672e636f6d3e8879041316080021050256e2132b021b03050b09080702061508090a0b020416020301021e01021780000a09100907e75e1dd99ad86d0c00fe39d2008359352782bc9b61ac382584cd8eff3f57a18c2287e3afeeb05d1f04ba00fe2d0bc1ddf3ff8adb9afa3e7d9287244b4ec567f3db4d60b74a9b5465ed528203"
// Source: https://sites.google.com/site/brainhub/pgpecckeys#TOC-ECC-NIST-P-384-key
const ecc384PubHex = `99006f044d53059213052b81040022030304f6b8c5aced5b84ef9f4a209db2e4a9dfb70d28cb8c10ecd57674a9fa5a67389942b62d5e51367df4c7bfd3f8e500feecf07ed265a621a8ebbbe53e947ec78c677eba143bd1533c2b350e1c29f82313e1e1108eba063be1e64b10e6950e799c2db42465635f6473615f64685f333834203c6f70656e70677040627261696e6875622e6f72673e8900cb04101309005305024d530592301480000000002000077072656665727265642d656d61696c2d656e636f64696e67407067702e636f6d7067706d696d65040b090807021901051b03000000021602051e010000000415090a08000a0910098033880f54719fca2b0180aa37350968bd5f115afd8ce7bc7b103822152dbff06d0afcda835329510905b98cb469ba208faab87c7412b799e7b633017f58364ea480e8a1a3f253a0c5f22c446e8be9a9fce6210136ee30811abbd49139de28b5bdf8dc36d06ae748579e9ff503b90073044d53059212052b810400220303042faa84024a20b6735c4897efa5bfb41bf85b7eefeab5ca0cb9ffc8ea04a46acb25534a577694f9e25340a4ab5223a9dd1eda530c8aa2e6718db10d7e672558c7736fe09369ea5739a2a3554bf16d41faa50562f11c6d39bbd5dffb6b9a9ec9180301090989008404181309000c05024d530592051b0c000000000a0910098033880f54719f80970180eee7a6d8fcee41ee4f9289df17f9bcf9d955dca25c583b94336f3a2b2d4986dc5cf417b8d2dc86f741a9e1a6d236c0e3017d1c76575458a0cfb93ae8a2b274fcc65ceecd7a91eec83656ba13219969f06945b48c56bd04152c3a0553c5f2f4bd1267`
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"io"
"github.com/ProtonMail/go-crypto/openpgp/errors"
)
type PacketReader interface {
Next() (p Packet, err error)
Push(reader io.Reader) (err error)
Unread(p Packet)
}
// Reader reads packets from an io.Reader and allows packets to be 'unread' so
// that they result from the next call to Next.
type Reader struct {
q []Packet
readers []io.Reader
}
// New io.Readers are pushed when a compressed or encrypted packet is processed
// and recursively treated as a new source of packets. However, a carefully
// crafted packet can trigger an infinite recursive sequence of packets. See
// http://mumble.net/~campbell/misc/pgp-quine
// https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4402
// This constant limits the number of recursive packets that may be pushed.
const maxReaders = 32
// Next returns the most recently unread Packet, or reads another packet from
// the top-most io.Reader. Unknown/unsupported/Marker packet types are skipped.
func (r *Reader) Next() (p Packet, err error) {
for {
p, err := r.read()
if err == io.EOF {
break
} else if err != nil {
if _, ok := err.(errors.UnknownPacketTypeError); ok {
continue
}
if _, ok := err.(errors.UnsupportedError); ok {
switch p.(type) {
case *SymmetricallyEncrypted, *AEADEncrypted, *Compressed, *LiteralData:
return nil, err
}
continue
}
return nil, err
} else {
//A marker packet MUST be ignored when received
switch p.(type) {
case *Marker:
continue
}
return p, nil
}
}
return nil, io.EOF
}
// Next returns the most recently unread Packet, or reads another packet from
// the top-most io.Reader. Unknown/Marker packet types are skipped while unsupported
// packets are returned as UnsupportedPacket type.
func (r *Reader) NextWithUnsupported() (p Packet, err error) {
for {
p, err = r.read()
if err == io.EOF {
break
} else if err != nil {
if _, ok := err.(errors.UnknownPacketTypeError); ok {
continue
}
if casteErr, ok := err.(errors.UnsupportedError); ok {
return &UnsupportedPacket{
IncompletePacket: p,
Error: casteErr,
}, nil
}
return
} else {
//A marker packet MUST be ignored when received
switch p.(type) {
case *Marker:
continue
}
return
}
}
return nil, io.EOF
}
func (r *Reader) read() (p Packet, err error) {
if len(r.q) > 0 {
p = r.q[len(r.q)-1]
r.q = r.q[:len(r.q)-1]
return
}
for len(r.readers) > 0 {
p, err = Read(r.readers[len(r.readers)-1])
if err == io.EOF {
r.readers = r.readers[:len(r.readers)-1]
continue
}
return p, err
}
return nil, io.EOF
}
// Push causes the Reader to start reading from a new io.Reader. When an EOF
// error is seen from the new io.Reader, it is popped and the Reader continues
// to read from the next most recent io.Reader. Push returns a StructuralError
// if pushing the reader would exceed the maximum recursion level, otherwise it
// returns nil.
func (r *Reader) Push(reader io.Reader) (err error) {
if len(r.readers) >= maxReaders {
return errors.StructuralError("too many layers of packets")
}
r.readers = append(r.readers, reader)
return nil
}
// Unread causes the given Packet to be returned from the next call to Next.
func (r *Reader) Unread(p Packet) {
r.q = append(r.q, p)
}
func NewReader(r io.Reader) *Reader {
return &Reader{
q: nil,
readers: []io.Reader{r},
}
}
// CheckReader is similar to Reader but additionally
// uses the pushdown automata to verify the read packet sequence.
type CheckReader struct {
Reader
verifier *SequenceVerifier
fullyRead bool
}
// Next returns the most recently unread Packet, or reads another packet from
// the top-most io.Reader. Unknown packet types are skipped.
// If the read packet sequence does not conform to the packet composition
// rules in rfc4880, it returns an error.
func (r *CheckReader) Next() (p Packet, err error) {
if r.fullyRead {
return nil, io.EOF
}
if len(r.q) > 0 {
p = r.q[len(r.q)-1]
r.q = r.q[:len(r.q)-1]
return
}
var errMsg error
for len(r.readers) > 0 {
p, errMsg, err = ReadWithCheck(r.readers[len(r.readers)-1], r.verifier)
if errMsg != nil {
err = errMsg
return
}
if err == nil {
return
}
if err == io.EOF {
r.readers = r.readers[:len(r.readers)-1]
continue
}
//A marker packet MUST be ignored when received
switch p.(type) {
case *Marker:
continue
}
if _, ok := err.(errors.UnknownPacketTypeError); ok {
continue
}
if _, ok := err.(errors.UnsupportedError); ok {
switch p.(type) {
case *SymmetricallyEncrypted, *AEADEncrypted, *Compressed, *LiteralData:
return nil, err
}
continue
}
return nil, err
}
if errMsg = r.verifier.Next(EOSSymbol); errMsg != nil {
return nil, errMsg
}
if errMsg = r.verifier.AssertValid(); errMsg != nil {
return nil, errMsg
}
r.fullyRead = true
return nil, io.EOF
}
func NewCheckReader(r io.Reader) *CheckReader {
return &CheckReader{
Reader: Reader{
q: nil,
readers: []io.Reader{r},
},
verifier: NewSequenceVerifier(),
fullyRead: false,
}
}
package packet
// Recipient type represents a Intended Recipient Fingerprint subpacket
// See https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh#name-intended-recipient-fingerpr
type Recipient struct {
KeyVersion int
Fingerprint []byte
}
func (r *Recipient) Serialize() []byte {
packet := make([]byte, len(r.Fingerprint)+1)
packet[0] = byte(r.KeyVersion)
copy(packet[1:], r.Fingerprint)
return packet
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto"
"crypto/dsa"
"encoding/asn1"
"encoding/binary"
"hash"
"io"
"math/big"
"strconv"
"time"
"github.com/ProtonMail/go-crypto/openpgp/ecdsa"
"github.com/ProtonMail/go-crypto/openpgp/ed25519"
"github.com/ProtonMail/go-crypto/openpgp/ed448"
"github.com/ProtonMail/go-crypto/openpgp/eddsa"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"github.com/ProtonMail/go-crypto/openpgp/internal/encoding"
)
const (
// First octet of key flags.
// See RFC 9580, section 5.2.3.29 for details.
KeyFlagCertify = 1 << iota
KeyFlagSign
KeyFlagEncryptCommunications
KeyFlagEncryptStorage
KeyFlagSplitKey
KeyFlagAuthenticate
_
KeyFlagGroupKey
)
const (
// First octet of keyserver preference flags.
// See RFC 9580, section 5.2.3.25 for details.
_ = 1 << iota
_
_
_
_
_
_
KeyserverPrefNoModify
)
const SaltNotationName = "salt@notations.openpgpjs.org"
// Signature represents a signature. See RFC 9580, section 5.2.
type Signature struct {
Version int
SigType SignatureType
PubKeyAlgo PublicKeyAlgorithm
Hash crypto.Hash
// salt contains a random salt value for v6 signatures
// See RFC 9580 Section 5.2.4.
salt []byte
// HashSuffix is extra data that is hashed in after the signed data.
HashSuffix []byte
// HashTag contains the first two bytes of the hash for fast rejection
// of bad signed data.
HashTag [2]byte
// Metadata includes format, filename and time, and is protected by v5
// signatures of type 0x00 or 0x01. This metadata is included into the hash
// computation; if nil, six 0x00 bytes are used instead. See section 5.2.4.
Metadata *LiteralData
CreationTime time.Time
RSASignature encoding.Field
DSASigR, DSASigS encoding.Field
ECDSASigR, ECDSASigS encoding.Field
EdDSASigR, EdDSASigS encoding.Field
EdSig []byte
// rawSubpackets contains the unparsed subpackets, in order.
rawSubpackets []outputSubpacket
// The following are optional so are nil when not included in the
// signature.
SigLifetimeSecs, KeyLifetimeSecs *uint32
PreferredSymmetric, PreferredHash, PreferredCompression []uint8
PreferredCipherSuites [][2]uint8
IssuerKeyId *uint64
IssuerFingerprint []byte
SignerUserId *string
IsPrimaryId *bool
Notations []*Notation
IntendedRecipients []*Recipient
// TrustLevel and TrustAmount can be set by the signer to assert that
// the key is not only valid but also trustworthy at the specified
// level.
// See RFC 9580, section 5.2.3.21 for details.
TrustLevel TrustLevel
TrustAmount TrustAmount
// TrustRegularExpression can be used in conjunction with trust Signature
// packets to limit the scope of the trust that is extended.
// See RFC 9580, section 5.2.3.22 for details.
TrustRegularExpression *string
// KeyserverPrefsValid is set if any keyserver preferences were given. See RFC 9580, section
// 5.2.3.25 for details.
KeyserverPrefsValid bool
KeyserverPrefNoModify bool
// PreferredKeyserver can be set to a URI where the latest version of the
// key that this signature is made over can be found. See RFC 9580, section
// 5.2.3.26 for details.
PreferredKeyserver string
// PolicyURI can be set to the URI of a document that describes the
// policy under which the signature was issued. See RFC 9580, section
// 5.2.3.28 for details.
PolicyURI string
// FlagsValid is set if any flags were given. See RFC 9580, section
// 5.2.3.29 for details.
FlagsValid bool
FlagCertify, FlagSign, FlagEncryptCommunications, FlagEncryptStorage, FlagSplitKey, FlagAuthenticate, FlagGroupKey bool
// RevocationReason is set if this signature has been revoked.
// See RFC 9580, section 5.2.3.31 for details.
RevocationReason *ReasonForRevocation
RevocationReasonText string
// In a self-signature, these flags are set there is a features subpacket
// indicating that the issuer implementation supports these features
// see https://datatracker.ietf.org/doc/html/draft-ietf-openpgp-crypto-refresh#features-subpacket
SEIPDv1, SEIPDv2 bool
// EmbeddedSignature, if non-nil, is a signature of the parent key, by
// this key. This prevents an attacker from claiming another's signing
// subkey as their own.
EmbeddedSignature *Signature
outSubpackets []outputSubpacket
}
// VerifiableSignature internally keeps state if the
// the signature has been verified before.
type VerifiableSignature struct {
Valid *bool // nil if it has not been verified yet
Packet *Signature
}
// NewVerifiableSig returns a struct of type VerifiableSignature referencing the input signature.
func NewVerifiableSig(signature *Signature) *VerifiableSignature {
return &VerifiableSignature{
Packet: signature,
}
}
// Salt returns the signature salt for v6 signatures.
func (sig *Signature) Salt() []byte {
if sig == nil {
return nil
}
return sig.salt
}
func (sig *Signature) parse(r io.Reader) (err error) {
// RFC 9580, section 5.2.3
var buf [7]byte
_, err = readFull(r, buf[:1])
if err != nil {
return
}
sig.Version = int(buf[0])
if sig.Version != 4 && sig.Version != 5 && sig.Version != 6 {
err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0])))
return
}
if V5Disabled && sig.Version == 5 {
return errors.UnsupportedError("support for parsing v5 entities is disabled; build with `-tags v5` if needed")
}
if sig.Version == 6 {
_, err = readFull(r, buf[:7])
} else {
_, err = readFull(r, buf[:5])
}
if err != nil {
return
}
sig.SigType = SignatureType(buf[0])
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[1])
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA, PubKeyAlgoEdDSA, PubKeyAlgoEd25519, PubKeyAlgoEd448:
default:
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo)))
return
}
var ok bool
if sig.Version < 5 {
sig.Hash, ok = algorithm.HashIdToHashWithSha1(buf[2])
} else {
sig.Hash, ok = algorithm.HashIdToHash(buf[2])
}
if !ok {
return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2])))
}
var hashedSubpacketsLength int
if sig.Version == 6 {
// For a v6 signature, a four-octet length is used.
hashedSubpacketsLength =
int(buf[3])<<24 |
int(buf[4])<<16 |
int(buf[5])<<8 |
int(buf[6])
} else {
hashedSubpacketsLength = int(buf[3])<<8 | int(buf[4])
}
hashedSubpackets := make([]byte, hashedSubpacketsLength)
_, err = readFull(r, hashedSubpackets)
if err != nil {
return
}
err = sig.buildHashSuffix(hashedSubpackets)
if err != nil {
return
}
err = parseSignatureSubpackets(sig, hashedSubpackets, true)
if err != nil {
return
}
if sig.Version == 6 {
_, err = readFull(r, buf[:4])
} else {
_, err = readFull(r, buf[:2])
}
if err != nil {
return
}
var unhashedSubpacketsLength uint32
if sig.Version == 6 {
unhashedSubpacketsLength = uint32(buf[0])<<24 | uint32(buf[1])<<16 | uint32(buf[2])<<8 | uint32(buf[3])
} else {
unhashedSubpacketsLength = uint32(buf[0])<<8 | uint32(buf[1])
}
unhashedSubpackets := make([]byte, unhashedSubpacketsLength)
_, err = readFull(r, unhashedSubpackets)
if err != nil {
return
}
err = parseSignatureSubpackets(sig, unhashedSubpackets, false)
if err != nil {
return
}
_, err = readFull(r, sig.HashTag[:2])
if err != nil {
return
}
if sig.Version == 6 {
// Only for v6 signatures, a variable-length field containing the salt
_, err = readFull(r, buf[:1])
if err != nil {
return
}
saltLength := int(buf[0])
var expectedSaltLength int
expectedSaltLength, err = SaltLengthForHash(sig.Hash)
if err != nil {
return
}
if saltLength != expectedSaltLength {
err = errors.StructuralError("unexpected salt size for the given hash algorithm")
return
}
salt := make([]byte, expectedSaltLength)
_, err = readFull(r, salt)
if err != nil {
return
}
sig.salt = salt
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sig.RSASignature = new(encoding.MPI)
_, err = sig.RSASignature.ReadFrom(r)
case PubKeyAlgoDSA:
sig.DSASigR = new(encoding.MPI)
if _, err = sig.DSASigR.ReadFrom(r); err != nil {
return
}
sig.DSASigS = new(encoding.MPI)
_, err = sig.DSASigS.ReadFrom(r)
case PubKeyAlgoECDSA:
sig.ECDSASigR = new(encoding.MPI)
if _, err = sig.ECDSASigR.ReadFrom(r); err != nil {
return
}
sig.ECDSASigS = new(encoding.MPI)
_, err = sig.ECDSASigS.ReadFrom(r)
case PubKeyAlgoEdDSA:
sig.EdDSASigR = new(encoding.MPI)
if _, err = sig.EdDSASigR.ReadFrom(r); err != nil {
return
}
sig.EdDSASigS = new(encoding.MPI)
if _, err = sig.EdDSASigS.ReadFrom(r); err != nil {
return
}
case PubKeyAlgoEd25519:
sig.EdSig, err = ed25519.ReadSignature(r)
if err != nil {
return
}
case PubKeyAlgoEd448:
sig.EdSig, err = ed448.ReadSignature(r)
if err != nil {
return
}
default:
panic("unreachable")
}
return
}
// parseSignatureSubpackets parses subpackets of the main signature packet. See
// RFC 9580, section 5.2.3.1.
func parseSignatureSubpackets(sig *Signature, subpackets []byte, isHashed bool) (err error) {
for len(subpackets) > 0 {
subpackets, err = parseSignatureSubpacket(sig, subpackets, isHashed)
if err != nil {
return
}
}
if sig.CreationTime.IsZero() {
err = errors.StructuralError("no creation time in signature")
}
return
}
type signatureSubpacketType uint8
const (
creationTimeSubpacket signatureSubpacketType = 2
signatureExpirationSubpacket signatureSubpacketType = 3
exportableCertSubpacket signatureSubpacketType = 4
trustSubpacket signatureSubpacketType = 5
regularExpressionSubpacket signatureSubpacketType = 6
keyExpirationSubpacket signatureSubpacketType = 9
prefSymmetricAlgosSubpacket signatureSubpacketType = 11
issuerSubpacket signatureSubpacketType = 16
notationDataSubpacket signatureSubpacketType = 20
prefHashAlgosSubpacket signatureSubpacketType = 21
prefCompressionSubpacket signatureSubpacketType = 22
keyserverPrefsSubpacket signatureSubpacketType = 23
prefKeyserverSubpacket signatureSubpacketType = 24
primaryUserIdSubpacket signatureSubpacketType = 25
policyUriSubpacket signatureSubpacketType = 26
keyFlagsSubpacket signatureSubpacketType = 27
signerUserIdSubpacket signatureSubpacketType = 28
reasonForRevocationSubpacket signatureSubpacketType = 29
featuresSubpacket signatureSubpacketType = 30
embeddedSignatureSubpacket signatureSubpacketType = 32
issuerFingerprintSubpacket signatureSubpacketType = 33
intendedRecipientSubpacket signatureSubpacketType = 35
prefCipherSuitesSubpacket signatureSubpacketType = 39
)
// parseSignatureSubpacket parses a single subpacket. len(subpacket) is >= 1.
func parseSignatureSubpacket(sig *Signature, subpacket []byte, isHashed bool) (rest []byte, err error) {
// RFC 9580, section 5.2.3.7
var (
length uint32
packetType signatureSubpacketType
isCritical bool
)
if len(subpacket) == 0 {
err = errors.StructuralError("zero length signature subpacket")
return
}
switch {
case subpacket[0] < 192:
length = uint32(subpacket[0])
subpacket = subpacket[1:]
case subpacket[0] < 255:
if len(subpacket) < 2 {
goto Truncated
}
length = uint32(subpacket[0]-192)<<8 + uint32(subpacket[1]) + 192
subpacket = subpacket[2:]
default:
if len(subpacket) < 5 {
goto Truncated
}
length = uint32(subpacket[1])<<24 |
uint32(subpacket[2])<<16 |
uint32(subpacket[3])<<8 |
uint32(subpacket[4])
subpacket = subpacket[5:]
}
if length > uint32(len(subpacket)) {
goto Truncated
}
rest = subpacket[length:]
subpacket = subpacket[:length]
if len(subpacket) == 0 {
err = errors.StructuralError("zero length signature subpacket")
return
}
packetType = signatureSubpacketType(subpacket[0] & 0x7f)
isCritical = subpacket[0]&0x80 == 0x80
subpacket = subpacket[1:]
sig.rawSubpackets = append(sig.rawSubpackets, outputSubpacket{isHashed, packetType, isCritical, subpacket})
if !isHashed &&
packetType != issuerSubpacket &&
packetType != issuerFingerprintSubpacket &&
packetType != embeddedSignatureSubpacket {
return
}
switch packetType {
case creationTimeSubpacket:
if len(subpacket) != 4 {
err = errors.StructuralError("signature creation time not four bytes")
return
}
t := binary.BigEndian.Uint32(subpacket)
sig.CreationTime = time.Unix(int64(t), 0)
case signatureExpirationSubpacket:
// Signature expiration time, section 5.2.3.18
if len(subpacket) != 4 {
err = errors.StructuralError("expiration subpacket with bad length")
return
}
sig.SigLifetimeSecs = new(uint32)
*sig.SigLifetimeSecs = binary.BigEndian.Uint32(subpacket)
case exportableCertSubpacket:
if subpacket[0] == 0 {
err = errors.UnsupportedError("signature with non-exportable certification")
return
}
case trustSubpacket:
if len(subpacket) != 2 {
err = errors.StructuralError("trust subpacket with bad length")
return
}
// Trust level and amount, section 5.2.3.21
sig.TrustLevel = TrustLevel(subpacket[0])
sig.TrustAmount = TrustAmount(subpacket[1])
case regularExpressionSubpacket:
if len(subpacket) == 0 {
err = errors.StructuralError("regexp subpacket with bad length")
return
}
// Trust regular expression, section 5.2.3.22
// RFC specifies the string should be null-terminated; remove a null byte from the end
if subpacket[len(subpacket)-1] != 0x00 {
err = errors.StructuralError("expected regular expression to be null-terminated")
return
}
trustRegularExpression := string(subpacket[:len(subpacket)-1])
sig.TrustRegularExpression = &trustRegularExpression
case keyExpirationSubpacket:
// Key expiration time, section 5.2.3.13
if len(subpacket) != 4 {
err = errors.StructuralError("key expiration subpacket with bad length")
return
}
sig.KeyLifetimeSecs = new(uint32)
*sig.KeyLifetimeSecs = binary.BigEndian.Uint32(subpacket)
case prefSymmetricAlgosSubpacket:
// Preferred symmetric algorithms, section 5.2.3.14
sig.PreferredSymmetric = make([]byte, len(subpacket))
copy(sig.PreferredSymmetric, subpacket)
case issuerSubpacket:
// Issuer, section 5.2.3.12
if sig.Version > 4 && isHashed {
err = errors.StructuralError("issuer subpacket found in v6 key")
return
}
if len(subpacket) != 8 {
err = errors.StructuralError("issuer subpacket with bad length")
return
}
if sig.Version <= 4 {
sig.IssuerKeyId = new(uint64)
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket)
}
case notationDataSubpacket:
// Notation data, section 5.2.3.24
if len(subpacket) < 8 {
err = errors.StructuralError("notation data subpacket with bad length")
return
}
nameLength := uint32(subpacket[4])<<8 | uint32(subpacket[5])
valueLength := uint32(subpacket[6])<<8 | uint32(subpacket[7])
if len(subpacket) != int(nameLength)+int(valueLength)+8 {
err = errors.StructuralError("notation data subpacket with bad length")
return
}
notation := Notation{
IsHumanReadable: (subpacket[0] & 0x80) == 0x80,
Name: string(subpacket[8:(nameLength + 8)]),
Value: subpacket[(nameLength + 8):(valueLength + nameLength + 8)],
IsCritical: isCritical,
}
sig.Notations = append(sig.Notations, &notation)
case prefHashAlgosSubpacket:
// Preferred hash algorithms, section 5.2.3.16
sig.PreferredHash = make([]byte, len(subpacket))
copy(sig.PreferredHash, subpacket)
case prefCompressionSubpacket:
// Preferred compression algorithms, section 5.2.3.17
sig.PreferredCompression = make([]byte, len(subpacket))
copy(sig.PreferredCompression, subpacket)
case keyserverPrefsSubpacket:
// Keyserver preferences, section 5.2.3.25
sig.KeyserverPrefsValid = true
if len(subpacket) == 0 {
return
}
if subpacket[0]&KeyserverPrefNoModify != 0 {
sig.KeyserverPrefNoModify = true
}
case prefKeyserverSubpacket:
// Preferred keyserver, section 5.2.3.26
sig.PreferredKeyserver = string(subpacket)
case primaryUserIdSubpacket:
// Primary User ID, section 5.2.3.27
if len(subpacket) != 1 {
err = errors.StructuralError("primary user id subpacket with bad length")
return
}
sig.IsPrimaryId = new(bool)
if subpacket[0] > 0 {
*sig.IsPrimaryId = true
}
case keyFlagsSubpacket:
// Key flags, section 5.2.3.29
sig.FlagsValid = true
if len(subpacket) == 0 {
return
}
if subpacket[0]&KeyFlagCertify != 0 {
sig.FlagCertify = true
}
if subpacket[0]&KeyFlagSign != 0 {
sig.FlagSign = true
}
if subpacket[0]&KeyFlagEncryptCommunications != 0 {
sig.FlagEncryptCommunications = true
}
if subpacket[0]&KeyFlagEncryptStorage != 0 {
sig.FlagEncryptStorage = true
}
if subpacket[0]&KeyFlagSplitKey != 0 {
sig.FlagSplitKey = true
}
if subpacket[0]&KeyFlagAuthenticate != 0 {
sig.FlagAuthenticate = true
}
if subpacket[0]&KeyFlagGroupKey != 0 {
sig.FlagGroupKey = true
}
case signerUserIdSubpacket:
userId := string(subpacket)
sig.SignerUserId = &userId
case reasonForRevocationSubpacket:
// Reason For Revocation, section 5.2.3.31
if len(subpacket) == 0 {
err = errors.StructuralError("empty revocation reason subpacket")
return
}
sig.RevocationReason = new(ReasonForRevocation)
*sig.RevocationReason = NewReasonForRevocation(subpacket[0])
sig.RevocationReasonText = string(subpacket[1:])
case featuresSubpacket:
// Features subpacket, section 5.2.3.32 specifies a very general
// mechanism for OpenPGP implementations to signal support for new
// features.
if len(subpacket) > 0 {
if subpacket[0]&0x01 != 0 {
sig.SEIPDv1 = true
}
// 0x02 and 0x04 are reserved
if subpacket[0]&0x08 != 0 {
sig.SEIPDv2 = true
}
}
case embeddedSignatureSubpacket:
// Only usage is in signatures that cross-certify
// signing subkeys. section 5.2.3.34 describes the
// format, with its usage described in section 11.1
if sig.EmbeddedSignature != nil {
err = errors.StructuralError("Cannot have multiple embedded signatures")
return
}
sig.EmbeddedSignature = new(Signature)
if err := sig.EmbeddedSignature.parse(bytes.NewBuffer(subpacket)); err != nil {
return nil, err
}
if sigType := sig.EmbeddedSignature.SigType; sigType != SigTypePrimaryKeyBinding {
return nil, errors.StructuralError("cross-signature has unexpected type " + strconv.Itoa(int(sigType)))
}
case policyUriSubpacket:
// Policy URI, section 5.2.3.28
sig.PolicyURI = string(subpacket)
case issuerFingerprintSubpacket:
if len(subpacket) == 0 {
err = errors.StructuralError("empty issuer fingerprint subpacket")
return
}
v, l := subpacket[0], len(subpacket[1:])
if v >= 5 && l != 32 || v < 5 && l != 20 {
return nil, errors.StructuralError("bad fingerprint length")
}
sig.IssuerFingerprint = make([]byte, l)
copy(sig.IssuerFingerprint, subpacket[1:])
sig.IssuerKeyId = new(uint64)
if v >= 5 {
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket[1:9])
} else {
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket[13:21])
}
case intendedRecipientSubpacket:
// Intended Recipient Fingerprint, section 5.2.3.36
if len(subpacket) < 1 {
return nil, errors.StructuralError("invalid intended recipient fingerpring length")
}
version, length := subpacket[0], len(subpacket[1:])
if version >= 5 && length != 32 || version < 5 && length != 20 {
return nil, errors.StructuralError("invalid fingerprint length")
}
fingerprint := make([]byte, length)
copy(fingerprint, subpacket[1:])
sig.IntendedRecipients = append(sig.IntendedRecipients, &Recipient{int(version), fingerprint})
case prefCipherSuitesSubpacket:
// Preferred AEAD cipher suites, section 5.2.3.15
if len(subpacket)%2 != 0 {
err = errors.StructuralError("invalid aead cipher suite length")
return
}
sig.PreferredCipherSuites = make([][2]byte, len(subpacket)/2)
for i := 0; i < len(subpacket)/2; i++ {
sig.PreferredCipherSuites[i] = [2]uint8{subpacket[2*i], subpacket[2*i+1]}
}
default:
if isCritical {
err = errors.UnsupportedError("unknown critical signature subpacket type " + strconv.Itoa(int(packetType)))
return
}
}
return
Truncated:
err = errors.StructuralError("signature subpacket truncated")
return
}
// subpacketLengthLength returns the length, in bytes, of an encoded length value.
func subpacketLengthLength(length int) int {
if length < 192 {
return 1
}
if length < 16320 {
return 2
}
return 5
}
func (sig *Signature) CheckKeyIdOrFingerprint(pk *PublicKey) bool {
if sig.IssuerFingerprint != nil && len(sig.IssuerFingerprint) >= 20 {
return bytes.Equal(sig.IssuerFingerprint, pk.Fingerprint)
}
return sig.IssuerKeyId != nil && *sig.IssuerKeyId == pk.KeyId
}
func (sig *Signature) CheckKeyIdOrFingerprintExplicit(fingerprint []byte, keyId uint64) bool {
if sig.IssuerFingerprint != nil && len(sig.IssuerFingerprint) >= 20 && fingerprint != nil {
return bytes.Equal(sig.IssuerFingerprint, fingerprint)
}
return sig.IssuerKeyId != nil && *sig.IssuerKeyId == keyId
}
// serializeSubpacketLength marshals the given length into to.
func serializeSubpacketLength(to []byte, length int) int {
// RFC 9580, Section 4.2.1.
if length < 192 {
to[0] = byte(length)
return 1
}
if length < 16320 {
length -= 192
to[0] = byte((length >> 8) + 192)
to[1] = byte(length)
return 2
}
to[0] = 255
to[1] = byte(length >> 24)
to[2] = byte(length >> 16)
to[3] = byte(length >> 8)
to[4] = byte(length)
return 5
}
// subpacketsLength returns the serialized length, in bytes, of the given
// subpackets.
func subpacketsLength(subpackets []outputSubpacket, hashed bool) (length int) {
for _, subpacket := range subpackets {
if subpacket.hashed == hashed {
length += subpacketLengthLength(len(subpacket.contents) + 1)
length += 1 // type byte
length += len(subpacket.contents)
}
}
return
}
// serializeSubpackets marshals the given subpackets into to.
func serializeSubpackets(to []byte, subpackets []outputSubpacket, hashed bool) {
for _, subpacket := range subpackets {
if subpacket.hashed == hashed {
n := serializeSubpacketLength(to, len(subpacket.contents)+1)
to[n] = byte(subpacket.subpacketType)
if subpacket.isCritical {
to[n] |= 0x80
}
to = to[1+n:]
n = copy(to, subpacket.contents)
to = to[n:]
}
}
}
// SigExpired returns whether sig is a signature that has expired or is created
// in the future.
func (sig *Signature) SigExpired(currentTime time.Time) bool {
if sig.CreationTime.Unix() > currentTime.Unix() {
return true
}
if sig.SigLifetimeSecs == nil || *sig.SigLifetimeSecs == 0 {
return false
}
expiry := sig.CreationTime.Add(time.Duration(*sig.SigLifetimeSecs) * time.Second)
return currentTime.Unix() > expiry.Unix()
}
// buildHashSuffix constructs the HashSuffix member of sig in preparation for signing.
func (sig *Signature) buildHashSuffix(hashedSubpackets []byte) (err error) {
var hashId byte
var ok bool
if sig.Version < 5 {
hashId, ok = algorithm.HashToHashIdWithSha1(sig.Hash)
} else {
hashId, ok = algorithm.HashToHashId(sig.Hash)
}
if !ok {
sig.HashSuffix = nil
return errors.InvalidArgumentError("hash cannot be represented in OpenPGP: " + strconv.Itoa(int(sig.Hash)))
}
hashedFields := bytes.NewBuffer([]byte{
uint8(sig.Version),
uint8(sig.SigType),
uint8(sig.PubKeyAlgo),
uint8(hashId),
})
hashedSubpacketsLength := len(hashedSubpackets)
if sig.Version == 6 {
// v6 signatures store the length in 4 octets
hashedFields.Write([]byte{
uint8(hashedSubpacketsLength >> 24),
uint8(hashedSubpacketsLength >> 16),
uint8(hashedSubpacketsLength >> 8),
uint8(hashedSubpacketsLength),
})
} else {
hashedFields.Write([]byte{
uint8(hashedSubpacketsLength >> 8),
uint8(hashedSubpacketsLength),
})
}
lenPrefix := hashedFields.Len()
hashedFields.Write(hashedSubpackets)
var l uint64 = uint64(lenPrefix + len(hashedSubpackets))
if sig.Version == 5 {
// v5 case
hashedFields.Write([]byte{0x05, 0xff})
hashedFields.Write([]byte{
uint8(l >> 56), uint8(l >> 48), uint8(l >> 40), uint8(l >> 32),
uint8(l >> 24), uint8(l >> 16), uint8(l >> 8), uint8(l),
})
} else {
// v4 and v6 case
hashedFields.Write([]byte{byte(sig.Version), 0xff})
hashedFields.Write([]byte{
uint8(l >> 24), uint8(l >> 16), uint8(l >> 8), uint8(l),
})
}
sig.HashSuffix = make([]byte, hashedFields.Len())
copy(sig.HashSuffix, hashedFields.Bytes())
return
}
func (sig *Signature) signPrepareHash(h hash.Hash) (digest []byte, err error) {
hashedSubpacketsLen := subpacketsLength(sig.outSubpackets, true)
hashedSubpackets := make([]byte, hashedSubpacketsLen)
serializeSubpackets(hashedSubpackets, sig.outSubpackets, true)
err = sig.buildHashSuffix(hashedSubpackets)
if err != nil {
return
}
if sig.Version == 5 && (sig.SigType == 0x00 || sig.SigType == 0x01) {
sig.AddMetadataToHashSuffix()
}
h.Write(sig.HashSuffix)
digest = h.Sum(nil)
copy(sig.HashTag[:], digest)
return
}
// PrepareSign must be called to create a hash object before Sign for v6 signatures.
// The created hash object initially hashes a randomly generated salt
// as required by v6 signatures. The generated salt is stored in sig. If the signature is not v6,
// the method returns an empty hash object.
// See RFC 9580 Section 5.2.4.
func (sig *Signature) PrepareSign(config *Config) (hash.Hash, error) {
if !sig.Hash.Available() {
return nil, errors.UnsupportedError("hash function")
}
hasher := sig.Hash.New()
if sig.Version == 6 {
if sig.salt == nil {
var err error
sig.salt, err = SignatureSaltForHash(sig.Hash, config.Random())
if err != nil {
return nil, err
}
}
hasher.Write(sig.salt)
}
return hasher, nil
}
// SetSalt sets the signature salt for v6 signatures.
// Assumes salt is generated correctly and checks if length matches.
// If the signature is not v6, the method ignores the salt.
// Use PrepareSign whenever possible instead of generating and
// hashing the salt externally.
// See RFC 9580 Section 5.2.4.
func (sig *Signature) SetSalt(salt []byte) error {
if sig.Version == 6 {
expectedSaltLength, err := SaltLengthForHash(sig.Hash)
if err != nil {
return err
}
if salt == nil || len(salt) != expectedSaltLength {
return errors.InvalidArgumentError("unexpected salt size for the given hash algorithm")
}
sig.salt = salt
}
return nil
}
// PrepareVerify must be called to create a hash object before verifying v6 signatures.
// The created hash object initially hashes the internally stored salt.
// If the signature is not v6, the method returns an empty hash object.
// See RFC 9580 Section 5.2.4.
func (sig *Signature) PrepareVerify() (hash.Hash, error) {
if !sig.Hash.Available() {
return nil, errors.UnsupportedError("hash function")
}
hasher := sig.Hash.New()
if sig.Version == 6 {
if sig.salt == nil {
return nil, errors.StructuralError("v6 requires a salt for the hash to be signed")
}
hasher.Write(sig.salt)
}
return hasher, nil
}
// Sign signs a message with a private key. The hash, h, must contain
// the hash of the message to be signed and will be mutated by this function.
// On success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey, config *Config) (err error) {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
sig.Version = priv.PublicKey.Version
sig.IssuerFingerprint = priv.PublicKey.Fingerprint
if sig.Version < 6 && config.RandomizeSignaturesViaNotation() {
sig.removeNotationsWithName(SaltNotationName)
salt, err := SignatureSaltForHash(sig.Hash, config.Random())
if err != nil {
return err
}
notation := Notation{
Name: SaltNotationName,
Value: salt,
IsCritical: false,
IsHumanReadable: false,
}
sig.Notations = append(sig.Notations, &notation)
}
sig.outSubpackets, err = sig.buildSubpackets(priv.PublicKey)
if err != nil {
return err
}
digest, err := sig.signPrepareHash(h)
if err != nil {
return
}
switch priv.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
// supports both *rsa.PrivateKey and crypto.Signer
sigdata, err := priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
if err == nil {
sig.RSASignature = encoding.NewMPI(sigdata)
}
case PubKeyAlgoDSA:
dsaPriv := priv.PrivateKey.(*dsa.PrivateKey)
// Need to truncate hashBytes to match FIPS 186-3 section 4.6.
subgroupSize := (dsaPriv.Q.BitLen() + 7) / 8
if len(digest) > subgroupSize {
digest = digest[:subgroupSize]
}
r, s, err := dsa.Sign(config.Random(), dsaPriv, digest)
if err == nil {
sig.DSASigR = new(encoding.MPI).SetBig(r)
sig.DSASigS = new(encoding.MPI).SetBig(s)
}
case PubKeyAlgoECDSA:
var r, s *big.Int
if sk, ok := priv.PrivateKey.(*ecdsa.PrivateKey); ok {
r, s, err = ecdsa.Sign(config.Random(), sk, digest)
} else {
var b []byte
b, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash)
if err == nil {
r, s, err = unwrapECDSASig(b)
}
}
if err == nil {
sig.ECDSASigR = new(encoding.MPI).SetBig(r)
sig.ECDSASigS = new(encoding.MPI).SetBig(s)
}
case PubKeyAlgoEdDSA:
sk := priv.PrivateKey.(*eddsa.PrivateKey)
r, s, err := eddsa.Sign(sk, digest)
if err == nil {
sig.EdDSASigR = encoding.NewMPI(r)
sig.EdDSASigS = encoding.NewMPI(s)
}
case PubKeyAlgoEd25519:
sk := priv.PrivateKey.(*ed25519.PrivateKey)
signature, err := ed25519.Sign(sk, digest)
if err == nil {
sig.EdSig = signature
}
case PubKeyAlgoEd448:
sk := priv.PrivateKey.(*ed448.PrivateKey)
signature, err := ed448.Sign(sk, digest)
if err == nil {
sig.EdSig = signature
}
default:
err = errors.UnsupportedError("public key algorithm: " + strconv.Itoa(int(sig.PubKeyAlgo)))
}
return
}
// unwrapECDSASig parses the two integer components of an ASN.1-encoded ECDSA signature.
func unwrapECDSASig(b []byte) (r, s *big.Int, err error) {
var ecsdaSig struct {
R, S *big.Int
}
_, err = asn1.Unmarshal(b, &ecsdaSig)
if err != nil {
return
}
return ecsdaSig.R, ecsdaSig.S, nil
}
// SignUserId computes a signature from priv, asserting that pub is a valid
// key for the identity id. On success, the signature is stored in sig. Call
// Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignUserId(id string, pub *PublicKey, priv *PrivateKey, config *Config) error {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
prepareHash, err := sig.PrepareSign(config)
if err != nil {
return err
}
if err := userIdSignatureHash(id, pub, prepareHash); err != nil {
return err
}
return sig.Sign(prepareHash, priv, config)
}
// SignDirectKeyBinding computes a signature from priv
// On success, the signature is stored in sig.
// Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignDirectKeyBinding(pub *PublicKey, priv *PrivateKey, config *Config) error {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
prepareHash, err := sig.PrepareSign(config)
if err != nil {
return err
}
if err := directKeySignatureHash(pub, prepareHash); err != nil {
return err
}
return sig.Sign(prepareHash, priv, config)
}
// CrossSignKey computes a signature from signingKey on pub hashed using hashKey. On success,
// the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) CrossSignKey(pub *PublicKey, hashKey *PublicKey, signingKey *PrivateKey,
config *Config) error {
prepareHash, err := sig.PrepareSign(config)
if err != nil {
return err
}
h, err := keySignatureHash(hashKey, pub, prepareHash)
if err != nil {
return err
}
return sig.Sign(h, signingKey, config)
}
// SignKey computes a signature from priv, asserting that pub is a subkey. On
// success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) SignKey(pub *PublicKey, priv *PrivateKey, config *Config) error {
if priv.Dummy() {
return errors.ErrDummyPrivateKey("dummy key found")
}
prepareHash, err := sig.PrepareSign(config)
if err != nil {
return err
}
h, err := keySignatureHash(&priv.PublicKey, pub, prepareHash)
if err != nil {
return err
}
return sig.Sign(h, priv, config)
}
// RevokeKey computes a revocation signature of pub using priv. On success, the signature is
// stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) RevokeKey(pub *PublicKey, priv *PrivateKey, config *Config) error {
prepareHash, err := sig.PrepareSign(config)
if err != nil {
return err
}
if err := keyRevocationHash(pub, prepareHash); err != nil {
return err
}
return sig.Sign(prepareHash, priv, config)
}
// RevokeSubkey computes a subkey revocation signature of pub using priv.
// On success, the signature is stored in sig. Call Serialize to write it out.
// If config is nil, sensible defaults will be used.
func (sig *Signature) RevokeSubkey(pub *PublicKey, priv *PrivateKey, config *Config) error {
// Identical to a subkey binding signature
return sig.SignKey(pub, priv, config)
}
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been
// called first.
func (sig *Signature) Serialize(w io.Writer) (err error) {
if len(sig.outSubpackets) == 0 {
sig.outSubpackets = sig.rawSubpackets
}
if sig.RSASignature == nil && sig.DSASigR == nil && sig.ECDSASigR == nil && sig.EdDSASigR == nil && sig.EdSig == nil {
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize")
}
sigLength := 0
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
sigLength = int(sig.RSASignature.EncodedLength())
case PubKeyAlgoDSA:
sigLength = int(sig.DSASigR.EncodedLength())
sigLength += int(sig.DSASigS.EncodedLength())
case PubKeyAlgoECDSA:
sigLength = int(sig.ECDSASigR.EncodedLength())
sigLength += int(sig.ECDSASigS.EncodedLength())
case PubKeyAlgoEdDSA:
sigLength = int(sig.EdDSASigR.EncodedLength())
sigLength += int(sig.EdDSASigS.EncodedLength())
case PubKeyAlgoEd25519:
sigLength = ed25519.SignatureSize
case PubKeyAlgoEd448:
sigLength = ed448.SignatureSize
default:
panic("impossible")
}
hashedSubpacketsLen := subpacketsLength(sig.outSubpackets, true)
unhashedSubpacketsLen := subpacketsLength(sig.outSubpackets, false)
length := 4 + /* length of version|signature type|public-key algorithm|hash algorithm */
2 /* length of hashed subpackets */ + hashedSubpacketsLen +
2 /* length of unhashed subpackets */ + unhashedSubpacketsLen +
2 /* hash tag */ + sigLength
if sig.Version == 6 {
length += 4 + /* the two length fields are four-octet instead of two */
1 + /* salt length */
len(sig.salt) /* length salt */
}
err = serializeHeader(w, packetTypeSignature, length)
if err != nil {
return
}
err = sig.serializeBody(w)
if err != nil {
return err
}
return
}
func (sig *Signature) serializeBody(w io.Writer) (err error) {
var fields []byte
if sig.Version == 6 {
// v6 signatures use 4 octets for length
hashedSubpacketsLen :=
uint32(uint32(sig.HashSuffix[4])<<24) |
uint32(uint32(sig.HashSuffix[5])<<16) |
uint32(uint32(sig.HashSuffix[6])<<8) |
uint32(sig.HashSuffix[7])
fields = sig.HashSuffix[:8+hashedSubpacketsLen]
} else {
hashedSubpacketsLen := uint16(uint16(sig.HashSuffix[4])<<8) |
uint16(sig.HashSuffix[5])
fields = sig.HashSuffix[:6+hashedSubpacketsLen]
}
_, err = w.Write(fields)
if err != nil {
return
}
unhashedSubpacketsLen := subpacketsLength(sig.outSubpackets, false)
var unhashedSubpackets []byte
if sig.Version == 6 {
unhashedSubpackets = make([]byte, 4+unhashedSubpacketsLen)
unhashedSubpackets[0] = byte(unhashedSubpacketsLen >> 24)
unhashedSubpackets[1] = byte(unhashedSubpacketsLen >> 16)
unhashedSubpackets[2] = byte(unhashedSubpacketsLen >> 8)
unhashedSubpackets[3] = byte(unhashedSubpacketsLen)
serializeSubpackets(unhashedSubpackets[4:], sig.outSubpackets, false)
} else {
unhashedSubpackets = make([]byte, 2+unhashedSubpacketsLen)
unhashedSubpackets[0] = byte(unhashedSubpacketsLen >> 8)
unhashedSubpackets[1] = byte(unhashedSubpacketsLen)
serializeSubpackets(unhashedSubpackets[2:], sig.outSubpackets, false)
}
_, err = w.Write(unhashedSubpackets)
if err != nil {
return
}
_, err = w.Write(sig.HashTag[:])
if err != nil {
return
}
if sig.Version == 6 {
// write salt for v6 signatures
_, err = w.Write([]byte{uint8(len(sig.salt))})
if err != nil {
return
}
_, err = w.Write(sig.salt)
if err != nil {
return
}
}
switch sig.PubKeyAlgo {
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly:
_, err = w.Write(sig.RSASignature.EncodedBytes())
case PubKeyAlgoDSA:
if _, err = w.Write(sig.DSASigR.EncodedBytes()); err != nil {
return
}
_, err = w.Write(sig.DSASigS.EncodedBytes())
case PubKeyAlgoECDSA:
if _, err = w.Write(sig.ECDSASigR.EncodedBytes()); err != nil {
return
}
_, err = w.Write(sig.ECDSASigS.EncodedBytes())
case PubKeyAlgoEdDSA:
if _, err = w.Write(sig.EdDSASigR.EncodedBytes()); err != nil {
return
}
_, err = w.Write(sig.EdDSASigS.EncodedBytes())
case PubKeyAlgoEd25519:
err = ed25519.WriteSignature(w, sig.EdSig)
case PubKeyAlgoEd448:
err = ed448.WriteSignature(w, sig.EdSig)
default:
panic("impossible")
}
return
}
// outputSubpacket represents a subpacket to be marshaled.
type outputSubpacket struct {
hashed bool // true if this subpacket is in the hashed area.
subpacketType signatureSubpacketType
isCritical bool
contents []byte
}
func (sig *Signature) buildSubpackets(issuer PublicKey) (subpackets []outputSubpacket, err error) {
creationTime := make([]byte, 4)
binary.BigEndian.PutUint32(creationTime, uint32(sig.CreationTime.Unix()))
// Signature Creation Time
subpackets = append(subpackets, outputSubpacket{true, creationTimeSubpacket, true, creationTime})
// Signature Expiration Time
if sig.SigLifetimeSecs != nil && *sig.SigLifetimeSecs != 0 {
sigLifetime := make([]byte, 4)
binary.BigEndian.PutUint32(sigLifetime, *sig.SigLifetimeSecs)
subpackets = append(subpackets, outputSubpacket{true, signatureExpirationSubpacket, true, sigLifetime})
}
// Trust Signature
if sig.TrustLevel != 0 {
subpackets = append(subpackets, outputSubpacket{true, trustSubpacket, true, []byte{byte(sig.TrustLevel), byte(sig.TrustAmount)}})
}
// Regular Expression
if sig.TrustRegularExpression != nil {
// RFC specifies the string should be null-terminated; add a null byte to the end
subpackets = append(subpackets, outputSubpacket{true, regularExpressionSubpacket, true, []byte(*sig.TrustRegularExpression + "\000")})
}
// Key Expiration Time
if sig.KeyLifetimeSecs != nil && *sig.KeyLifetimeSecs != 0 {
keyLifetime := make([]byte, 4)
binary.BigEndian.PutUint32(keyLifetime, *sig.KeyLifetimeSecs)
subpackets = append(subpackets, outputSubpacket{true, keyExpirationSubpacket, true, keyLifetime})
}
// Preferred Symmetric Ciphers for v1 SEIPD
if len(sig.PreferredSymmetric) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefSymmetricAlgosSubpacket, false, sig.PreferredSymmetric})
}
// Issuer Key ID
if sig.IssuerKeyId != nil && sig.Version == 4 {
keyId := make([]byte, 8)
binary.BigEndian.PutUint64(keyId, *sig.IssuerKeyId)
subpackets = append(subpackets, outputSubpacket{true, issuerSubpacket, true, keyId})
}
// Notation Data
for _, notation := range sig.Notations {
subpackets = append(
subpackets,
outputSubpacket{
true,
notationDataSubpacket,
notation.IsCritical,
notation.getData(),
})
}
// Preferred Hash Algorithms
if len(sig.PreferredHash) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefHashAlgosSubpacket, false, sig.PreferredHash})
}
// Preferred Compression Algorithms
if len(sig.PreferredCompression) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefCompressionSubpacket, false, sig.PreferredCompression})
}
// Keyserver Preferences
// Keyserver preferences may only appear in self-signatures or certification signatures.
if sig.KeyserverPrefsValid {
var prefs byte
if sig.KeyserverPrefNoModify {
prefs |= KeyserverPrefNoModify
}
subpackets = append(subpackets, outputSubpacket{true, keyserverPrefsSubpacket, false, []byte{prefs}})
}
// Preferred Keyserver
if len(sig.PreferredKeyserver) > 0 {
subpackets = append(subpackets, outputSubpacket{true, prefKeyserverSubpacket, false, []uint8(sig.PreferredKeyserver)})
}
// Primary User ID
if sig.IsPrimaryId != nil && *sig.IsPrimaryId {
subpackets = append(subpackets, outputSubpacket{true, primaryUserIdSubpacket, false, []byte{1}})
}
// Policy URI
if len(sig.PolicyURI) > 0 {
subpackets = append(subpackets, outputSubpacket{true, policyUriSubpacket, false, []uint8(sig.PolicyURI)})
}
// Key Flags
// Key flags may only appear in self-signatures or certification signatures.
if sig.FlagsValid {
var flags byte
if sig.FlagCertify {
flags |= KeyFlagCertify
}
if sig.FlagSign {
flags |= KeyFlagSign
}
if sig.FlagEncryptCommunications {
flags |= KeyFlagEncryptCommunications
}
if sig.FlagEncryptStorage {
flags |= KeyFlagEncryptStorage
}
if sig.FlagSplitKey {
flags |= KeyFlagSplitKey
}
if sig.FlagAuthenticate {
flags |= KeyFlagAuthenticate
}
if sig.FlagGroupKey {
flags |= KeyFlagGroupKey
}
subpackets = append(subpackets, outputSubpacket{true, keyFlagsSubpacket, true, []byte{flags}})
}
// Signer's User ID
if sig.SignerUserId != nil {
subpackets = append(subpackets, outputSubpacket{true, signerUserIdSubpacket, false, []byte(*sig.SignerUserId)})
}
// Reason for Revocation
// Revocation reason appears only in revocation signatures and is serialized as per section 5.2.3.31.
if sig.RevocationReason != nil {
subpackets = append(subpackets, outputSubpacket{true, reasonForRevocationSubpacket, true,
append([]uint8{uint8(*sig.RevocationReason)}, []uint8(sig.RevocationReasonText)...)})
}
// Features
var features = byte(0x00)
if sig.SEIPDv1 {
features |= 0x01
}
if sig.SEIPDv2 {
features |= 0x08
}
if features != 0x00 {
subpackets = append(subpackets, outputSubpacket{true, featuresSubpacket, false, []byte{features}})
}
// Embedded Signature
// EmbeddedSignature appears only in subkeys capable of signing and is serialized as per section 5.2.3.34.
if sig.EmbeddedSignature != nil {
var buf bytes.Buffer
err = sig.EmbeddedSignature.serializeBody(&buf)
if err != nil {
return
}
subpackets = append(subpackets, outputSubpacket{true, embeddedSignatureSubpacket, true, buf.Bytes()})
}
// Issuer Fingerprint
if sig.IssuerFingerprint != nil {
contents := append([]uint8{uint8(issuer.Version)}, sig.IssuerFingerprint...)
subpackets = append(subpackets, outputSubpacket{true, issuerFingerprintSubpacket, sig.Version >= 5, contents})
}
// Intended Recipient Fingerprint
for _, recipient := range sig.IntendedRecipients {
subpackets = append(
subpackets,
outputSubpacket{
true,
intendedRecipientSubpacket,
false,
recipient.Serialize(),
})
}
// Preferred AEAD Ciphersuites
if len(sig.PreferredCipherSuites) > 0 {
serialized := make([]byte, len(sig.PreferredCipherSuites)*2)
for i, cipherSuite := range sig.PreferredCipherSuites {
serialized[2*i] = cipherSuite[0]
serialized[2*i+1] = cipherSuite[1]
}
subpackets = append(subpackets, outputSubpacket{true, prefCipherSuitesSubpacket, false, serialized})
}
return
}
// AddMetadataToHashSuffix modifies the current hash suffix to include metadata
// (format, filename, and time). Version 5 keys protect this data including it
// in the hash computation. See section 5.2.4.
func (sig *Signature) AddMetadataToHashSuffix() {
if sig == nil || sig.Version != 5 {
return
}
if sig.SigType != 0x00 && sig.SigType != 0x01 {
return
}
lit := sig.Metadata
if lit == nil {
// This will translate into six 0x00 bytes.
lit = &LiteralData{}
}
// Extract the current byte count
n := sig.HashSuffix[len(sig.HashSuffix)-8:]
l := uint64(
uint64(n[0])<<56 | uint64(n[1])<<48 | uint64(n[2])<<40 | uint64(n[3])<<32 |
uint64(n[4])<<24 | uint64(n[5])<<16 | uint64(n[6])<<8 | uint64(n[7]))
suffix := bytes.NewBuffer(nil)
suffix.Write(sig.HashSuffix[:l])
// Add the metadata
var buf [4]byte
buf[0] = lit.Format
fileName := lit.FileName
if len(lit.FileName) > 255 {
fileName = fileName[:255]
}
buf[1] = byte(len(fileName))
suffix.Write(buf[:2])
suffix.Write([]byte(lit.FileName))
binary.BigEndian.PutUint32(buf[:], lit.Time)
suffix.Write(buf[:])
suffix.Write([]byte{0x05, 0xff})
suffix.Write([]byte{
uint8(l >> 56), uint8(l >> 48), uint8(l >> 40), uint8(l >> 32),
uint8(l >> 24), uint8(l >> 16), uint8(l >> 8), uint8(l),
})
sig.HashSuffix = suffix.Bytes()
}
// SaltLengthForHash selects the required salt length for the given hash algorithm,
// as per Table 23 (Hash algorithm registry) of the crypto refresh.
// See RFC 9580 Section 9.5.
func SaltLengthForHash(hash crypto.Hash) (int, error) {
switch hash {
case crypto.SHA256, crypto.SHA224, crypto.SHA3_256:
return 16, nil
case crypto.SHA384:
return 24, nil
case crypto.SHA512, crypto.SHA3_512:
return 32, nil
default:
return 0, errors.UnsupportedError("hash function not supported for V6 signatures")
}
}
// SignatureSaltForHash generates a random signature salt
// with the length for the given hash algorithm.
// See RFC 9580 Section 9.5.
func SignatureSaltForHash(hash crypto.Hash, randReader io.Reader) ([]byte, error) {
saltLength, err := SaltLengthForHash(hash)
if err != nil {
return nil, err
}
salt := make([]byte, saltLength)
_, err = io.ReadFull(randReader, salt)
if err != nil {
return nil, err
}
return salt, nil
}
// removeNotationsWithName removes all notations in this signature with the given name.
func (sig *Signature) removeNotationsWithName(name string) {
if sig == nil || sig.Notations == nil {
return
}
updatedNotations := make([]*Notation, 0, len(sig.Notations))
for _, notation := range sig.Notations {
if notation.Name != name {
updatedNotations = append(updatedNotations, notation)
}
}
sig.Notations = updatedNotations
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"crypto/cipher"
"crypto/sha256"
"io"
"strconv"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/s2k"
"golang.org/x/crypto/hkdf"
)
// This is the largest session key that we'll support. Since at most 256-bit cipher
// is supported in OpenPGP, this is large enough to contain also the auth tag.
const maxSessionKeySizeInBytes = 64
// SymmetricKeyEncrypted represents a passphrase protected session key. See RFC
// 4880, section 5.3.
type SymmetricKeyEncrypted struct {
Version int
CipherFunc CipherFunction
Mode AEADMode
s2k func(out, in []byte)
iv []byte
encryptedKey []byte // Contains also the authentication tag for AEAD
}
// parse parses an SymmetricKeyEncrypted packet as specified in
// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#name-symmetric-key-encrypted-ses
func (ske *SymmetricKeyEncrypted) parse(r io.Reader) error {
var buf [1]byte
// Version
if _, err := readFull(r, buf[:]); err != nil {
return err
}
ske.Version = int(buf[0])
if ske.Version != 4 && ske.Version != 5 && ske.Version != 6 {
return errors.UnsupportedError("unknown SymmetricKeyEncrypted version")
}
if V5Disabled && ske.Version == 5 {
return errors.UnsupportedError("support for parsing v5 entities is disabled; build with `-tags v5` if needed")
}
if ske.Version > 5 {
// Scalar octet count
if _, err := readFull(r, buf[:]); err != nil {
return err
}
}
// Cipher function
if _, err := readFull(r, buf[:]); err != nil {
return err
}
ske.CipherFunc = CipherFunction(buf[0])
if !ske.CipherFunc.IsSupported() {
return errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(buf[0])))
}
if ske.Version >= 5 {
// AEAD mode
if _, err := readFull(r, buf[:]); err != nil {
return errors.StructuralError("cannot read AEAD octet from packet")
}
ske.Mode = AEADMode(buf[0])
}
if ske.Version > 5 {
// Scalar octet count
if _, err := readFull(r, buf[:]); err != nil {
return err
}
}
var err error
if ske.s2k, err = s2k.Parse(r); err != nil {
if _, ok := err.(errors.ErrDummyPrivateKey); ok {
return errors.UnsupportedError("missing key GNU extension in session key")
}
return err
}
if ske.Version >= 5 {
// AEAD IV
iv := make([]byte, ske.Mode.IvLength())
_, err := readFull(r, iv)
if err != nil {
return errors.StructuralError("cannot read AEAD IV")
}
ske.iv = iv
}
encryptedKey := make([]byte, maxSessionKeySizeInBytes)
// The session key may follow. We just have to try and read to find
// out. If it exists then we limit it to maxSessionKeySizeInBytes.
n, err := readFull(r, encryptedKey)
if err != nil && err != io.ErrUnexpectedEOF {
return err
}
if n != 0 {
if n == maxSessionKeySizeInBytes {
return errors.UnsupportedError("oversized encrypted session key")
}
ske.encryptedKey = encryptedKey[:n]
}
return nil
}
// Decrypt attempts to decrypt an encrypted session key and returns the key and
// the cipher to use when decrypting a subsequent Symmetrically Encrypted Data
// packet.
func (ske *SymmetricKeyEncrypted) Decrypt(passphrase []byte) ([]byte, CipherFunction, error) {
key := make([]byte, ske.CipherFunc.KeySize())
ske.s2k(key, passphrase)
if len(ske.encryptedKey) == 0 {
return key, ske.CipherFunc, nil
}
switch ske.Version {
case 4:
plaintextKey, cipherFunc, err := ske.decryptV4(key)
return plaintextKey, cipherFunc, err
case 5, 6:
plaintextKey, err := ske.aeadDecrypt(ske.Version, key)
return plaintextKey, CipherFunction(0), err
}
err := errors.UnsupportedError("unknown SymmetricKeyEncrypted version")
return nil, CipherFunction(0), err
}
func (ske *SymmetricKeyEncrypted) decryptV4(key []byte) ([]byte, CipherFunction, error) {
// the IV is all zeros
iv := make([]byte, ske.CipherFunc.blockSize())
c := cipher.NewCFBDecrypter(ske.CipherFunc.new(key), iv)
plaintextKey := make([]byte, len(ske.encryptedKey))
c.XORKeyStream(plaintextKey, ske.encryptedKey)
cipherFunc := CipherFunction(plaintextKey[0])
if cipherFunc.blockSize() == 0 {
return nil, ske.CipherFunc, errors.UnsupportedError(
"unknown cipher: " + strconv.Itoa(int(cipherFunc)))
}
plaintextKey = plaintextKey[1:]
if len(plaintextKey) != cipherFunc.KeySize() {
return nil, cipherFunc, errors.StructuralError(
"length of decrypted key not equal to cipher keysize")
}
return plaintextKey, cipherFunc, nil
}
func (ske *SymmetricKeyEncrypted) aeadDecrypt(version int, key []byte) ([]byte, error) {
adata := []byte{0xc3, byte(version), byte(ske.CipherFunc), byte(ske.Mode)}
aead := getEncryptedKeyAeadInstance(ske.CipherFunc, ske.Mode, key, adata, version)
plaintextKey, err := aead.Open(nil, ske.iv, ske.encryptedKey, adata)
if err != nil {
return nil, err
}
return plaintextKey, nil
}
// SerializeSymmetricKeyEncrypted serializes a symmetric key packet to w.
// The packet contains a random session key, encrypted by a key derived from
// the given passphrase. The session key is returned and must be passed to
// SerializeSymmetricallyEncrypted.
// If config is nil, sensible defaults will be used.
func SerializeSymmetricKeyEncrypted(w io.Writer, passphrase []byte, config *Config) (key []byte, err error) {
cipherFunc := config.Cipher()
sessionKey := make([]byte, cipherFunc.KeySize())
_, err = io.ReadFull(config.Random(), sessionKey)
if err != nil {
return
}
err = SerializeSymmetricKeyEncryptedReuseKey(w, sessionKey, passphrase, config)
if err != nil {
return
}
key = sessionKey
return
}
// SerializeSymmetricKeyEncryptedReuseKey serializes a symmetric key packet to w.
// The packet contains the given session key, encrypted by a key derived from
// the given passphrase. The returned session key must be passed to
// SerializeSymmetricallyEncrypted.
// If config is nil, sensible defaults will be used.
// Deprecated: Use SerializeSymmetricKeyEncryptedAEADReuseKey instead.
func SerializeSymmetricKeyEncryptedReuseKey(w io.Writer, sessionKey []byte, passphrase []byte, config *Config) (err error) {
return SerializeSymmetricKeyEncryptedAEADReuseKey(w, sessionKey, passphrase, config.AEAD() != nil, config)
}
// SerializeSymmetricKeyEncryptedAEADReuseKey serializes a symmetric key packet to w.
// The packet contains the given session key, encrypted by a key derived from
// the given passphrase. The returned session key must be passed to
// SerializeSymmetricallyEncrypted.
// If aeadSupported is set, SKESK v6 is used, otherwise v4.
// Note: aeadSupported MUST match the value passed to SerializeSymmetricallyEncrypted.
// If config is nil, sensible defaults will be used.
func SerializeSymmetricKeyEncryptedAEADReuseKey(w io.Writer, sessionKey []byte, passphrase []byte, aeadSupported bool, config *Config) (err error) {
var version int
if aeadSupported {
version = 6
} else {
version = 4
}
cipherFunc := config.Cipher()
// cipherFunc must be AES
if !cipherFunc.IsSupported() || cipherFunc < CipherAES128 || cipherFunc > CipherAES256 {
return errors.UnsupportedError("unsupported cipher: " + strconv.Itoa(int(cipherFunc)))
}
keySize := cipherFunc.KeySize()
s2kBuf := new(bytes.Buffer)
keyEncryptingKey := make([]byte, keySize)
// s2k.Serialize salts and stretches the passphrase, and writes the
// resulting key to keyEncryptingKey and the s2k descriptor to s2kBuf.
err = s2k.Serialize(s2kBuf, keyEncryptingKey, config.Random(), passphrase, config.S2K())
if err != nil {
return
}
s2kBytes := s2kBuf.Bytes()
var packetLength int
switch version {
case 4:
packetLength = 2 /* header */ + len(s2kBytes) + 1 /* cipher type */ + keySize
case 5, 6:
ivLen := config.AEAD().Mode().IvLength()
tagLen := config.AEAD().Mode().TagLength()
packetLength = 3 + len(s2kBytes) + ivLen + keySize + tagLen
}
if version > 5 {
packetLength += 2 // additional octet count fields
}
err = serializeHeader(w, packetTypeSymmetricKeyEncrypted, packetLength)
if err != nil {
return
}
// Symmetric Key Encrypted Version
buf := []byte{byte(version)}
if version > 5 {
// Scalar octet count
buf = append(buf, byte(3+len(s2kBytes)+config.AEAD().Mode().IvLength()))
}
// Cipher function
buf = append(buf, byte(cipherFunc))
if version >= 5 {
// AEAD mode
buf = append(buf, byte(config.AEAD().Mode()))
}
if version > 5 {
// Scalar octet count
buf = append(buf, byte(len(s2kBytes)))
}
_, err = w.Write(buf)
if err != nil {
return
}
_, err = w.Write(s2kBytes)
if err != nil {
return
}
switch version {
case 4:
iv := make([]byte, cipherFunc.blockSize())
c := cipher.NewCFBEncrypter(cipherFunc.new(keyEncryptingKey), iv)
encryptedCipherAndKey := make([]byte, keySize+1)
c.XORKeyStream(encryptedCipherAndKey, buf[1:])
c.XORKeyStream(encryptedCipherAndKey[1:], sessionKey)
_, err = w.Write(encryptedCipherAndKey)
if err != nil {
return
}
case 5, 6:
mode := config.AEAD().Mode()
adata := []byte{0xc3, byte(version), byte(cipherFunc), byte(mode)}
aead := getEncryptedKeyAeadInstance(cipherFunc, mode, keyEncryptingKey, adata, version)
// Sample iv using random reader
iv := make([]byte, config.AEAD().Mode().IvLength())
_, err = io.ReadFull(config.Random(), iv)
if err != nil {
return
}
// Seal and write (encryptedData includes auth. tag)
encryptedData := aead.Seal(nil, iv, sessionKey, adata)
_, err = w.Write(iv)
if err != nil {
return
}
_, err = w.Write(encryptedData)
if err != nil {
return
}
}
return
}
func getEncryptedKeyAeadInstance(c CipherFunction, mode AEADMode, inputKey, associatedData []byte, version int) (aead cipher.AEAD) {
var blockCipher cipher.Block
if version > 5 {
hkdfReader := hkdf.New(sha256.New, inputKey, []byte{}, associatedData)
encryptionKey := make([]byte, c.KeySize())
_, _ = readFull(hkdfReader, encryptionKey)
blockCipher = c.new(encryptionKey)
} else {
blockCipher = c.new(inputKey)
}
return mode.new(blockCipher)
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"io"
"github.com/ProtonMail/go-crypto/openpgp/errors"
)
const aeadSaltSize = 32
// SymmetricallyEncrypted represents a symmetrically encrypted byte string. The
// encrypted Contents will consist of more OpenPGP packets. See RFC 4880,
// sections 5.7 and 5.13.
type SymmetricallyEncrypted struct {
Version int
Contents io.Reader // contains tag for version 2
IntegrityProtected bool // If true it is type 18 (with MDC or AEAD). False is packet type 9
// Specific to version 1
prefix []byte
// Specific to version 2
Cipher CipherFunction
Mode AEADMode
ChunkSizeByte byte
Salt [aeadSaltSize]byte
}
const (
symmetricallyEncryptedVersionMdc = 1
symmetricallyEncryptedVersionAead = 2
)
func (se *SymmetricallyEncrypted) parse(r io.Reader) error {
if se.IntegrityProtected {
// See RFC 4880, section 5.13.
var buf [1]byte
_, err := readFull(r, buf[:])
if err != nil {
return err
}
switch buf[0] {
case symmetricallyEncryptedVersionMdc:
se.Version = symmetricallyEncryptedVersionMdc
case symmetricallyEncryptedVersionAead:
se.Version = symmetricallyEncryptedVersionAead
if err := se.parseAead(r); err != nil {
return err
}
default:
return errors.UnsupportedError("unknown SymmetricallyEncrypted version")
}
}
se.Contents = r
return nil
}
// Decrypt returns a ReadCloser, from which the decrypted Contents of the
// packet can be read. An incorrect key will only be detected after trying
// to decrypt the entire data.
func (se *SymmetricallyEncrypted) Decrypt(c CipherFunction, key []byte) (io.ReadCloser, error) {
if se.Version == symmetricallyEncryptedVersionAead {
return se.decryptAead(key)
}
return se.decryptMdc(c, key)
}
// SerializeSymmetricallyEncrypted serializes a symmetrically encrypted packet
// to w and returns a WriteCloser to which the to-be-encrypted packets can be
// written.
// If aeadSupported is set to true, SEIPDv2 is used with the indicated CipherSuite.
// Otherwise, SEIPDv1 is used with the indicated CipherFunction.
// Note: aeadSupported MUST match the value passed to SerializeEncryptedKeyAEAD
// and/or SerializeSymmetricKeyEncryptedAEADReuseKey.
// If config is nil, sensible defaults will be used.
func SerializeSymmetricallyEncrypted(w io.Writer, c CipherFunction, aeadSupported bool, cipherSuite CipherSuite, key []byte, config *Config) (Contents io.WriteCloser, err error) {
writeCloser := noOpCloser{w}
ciphertext, err := serializeStreamHeader(writeCloser, packetTypeSymmetricallyEncryptedIntegrityProtected)
if err != nil {
return
}
if aeadSupported {
return serializeSymmetricallyEncryptedAead(ciphertext, cipherSuite, config.AEADConfig.ChunkSizeByte(), config.Random(), key)
}
return serializeSymmetricallyEncryptedMdc(ciphertext, c, key, config)
}
// Copyright 2023 Proton AG. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto/cipher"
"crypto/sha256"
"fmt"
"io"
"strconv"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"golang.org/x/crypto/hkdf"
)
// parseAead parses a V2 SEIPD packet (AEAD) as specified in
// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#section-5.13.2
func (se *SymmetricallyEncrypted) parseAead(r io.Reader) error {
headerData := make([]byte, 3)
if n, err := io.ReadFull(r, headerData); n < 3 {
return errors.StructuralError("could not read aead header: " + err.Error())
}
// Cipher
se.Cipher = CipherFunction(headerData[0])
// cipherFunc must have block size 16 to use AEAD
if se.Cipher.blockSize() != 16 {
return errors.UnsupportedError("invalid aead cipher: " + strconv.Itoa(int(se.Cipher)))
}
// Mode
se.Mode = AEADMode(headerData[1])
if se.Mode.TagLength() == 0 {
return errors.UnsupportedError("unknown aead mode: " + strconv.Itoa(int(se.Mode)))
}
// Chunk size
se.ChunkSizeByte = headerData[2]
if se.ChunkSizeByte > 16 {
return errors.UnsupportedError("invalid aead chunk size byte: " + strconv.Itoa(int(se.ChunkSizeByte)))
}
// Salt
if n, err := io.ReadFull(r, se.Salt[:]); n < aeadSaltSize {
return errors.StructuralError("could not read aead salt: " + err.Error())
}
return nil
}
// associatedData for chunks: tag, version, cipher, mode, chunk size byte
func (se *SymmetricallyEncrypted) associatedData() []byte {
return []byte{
0xD2,
symmetricallyEncryptedVersionAead,
byte(se.Cipher),
byte(se.Mode),
se.ChunkSizeByte,
}
}
// decryptAead decrypts a V2 SEIPD packet (AEAD) as specified in
// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#section-5.13.2
func (se *SymmetricallyEncrypted) decryptAead(inputKey []byte) (io.ReadCloser, error) {
if se.Cipher.KeySize() != len(inputKey) {
return nil, errors.StructuralError(fmt.Sprintf("invalid session key length for cipher: got %d bytes, but expected %d bytes", len(inputKey), se.Cipher.KeySize()))
}
aead, nonce := getSymmetricallyEncryptedAeadInstance(se.Cipher, se.Mode, inputKey, se.Salt[:], se.associatedData())
// Carry the first tagLen bytes
chunkSize := decodeAEADChunkSize(se.ChunkSizeByte)
tagLen := se.Mode.TagLength()
chunkBytes := make([]byte, chunkSize+tagLen*2)
peekedBytes := chunkBytes[chunkSize+tagLen:]
n, err := io.ReadFull(se.Contents, peekedBytes)
if n < tagLen || (err != nil && err != io.EOF) {
return nil, errors.StructuralError("not enough data to decrypt:" + err.Error())
}
return &aeadDecrypter{
aeadCrypter: aeadCrypter{
aead: aead,
chunkSize: decodeAEADChunkSize(se.ChunkSizeByte),
nonce: nonce,
associatedData: se.associatedData(),
chunkIndex: nonce[len(nonce)-8:],
packetTag: packetTypeSymmetricallyEncryptedIntegrityProtected,
},
reader: se.Contents,
chunkBytes: chunkBytes,
peekedBytes: peekedBytes,
}, nil
}
// serializeSymmetricallyEncryptedAead encrypts to a writer a V2 SEIPD packet (AEAD) as specified in
// https://www.ietf.org/archive/id/draft-ietf-openpgp-crypto-refresh-07.html#section-5.13.2
func serializeSymmetricallyEncryptedAead(ciphertext io.WriteCloser, cipherSuite CipherSuite, chunkSizeByte byte, rand io.Reader, inputKey []byte) (Contents io.WriteCloser, err error) {
// cipherFunc must have block size 16 to use AEAD
if cipherSuite.Cipher.blockSize() != 16 {
return nil, errors.InvalidArgumentError("invalid aead cipher function")
}
if cipherSuite.Cipher.KeySize() != len(inputKey) {
return nil, errors.InvalidArgumentError("error in aead serialization: bad key length")
}
// Data for en/decryption: tag, version, cipher, aead mode, chunk size
prefix := []byte{
0xD2,
symmetricallyEncryptedVersionAead,
byte(cipherSuite.Cipher),
byte(cipherSuite.Mode),
chunkSizeByte,
}
// Write header (that correspond to prefix except first byte)
n, err := ciphertext.Write(prefix[1:])
if err != nil || n < 4 {
return nil, err
}
// Random salt
salt := make([]byte, aeadSaltSize)
if _, err := io.ReadFull(rand, salt); err != nil {
return nil, err
}
if _, err := ciphertext.Write(salt); err != nil {
return nil, err
}
aead, nonce := getSymmetricallyEncryptedAeadInstance(cipherSuite.Cipher, cipherSuite.Mode, inputKey, salt, prefix)
chunkSize := decodeAEADChunkSize(chunkSizeByte)
tagLen := aead.Overhead()
chunkBytes := make([]byte, chunkSize+tagLen)
return &aeadEncrypter{
aeadCrypter: aeadCrypter{
aead: aead,
chunkSize: chunkSize,
associatedData: prefix,
nonce: nonce,
chunkIndex: nonce[len(nonce)-8:],
packetTag: packetTypeSymmetricallyEncryptedIntegrityProtected,
},
writer: ciphertext,
chunkBytes: chunkBytes,
}, nil
}
func getSymmetricallyEncryptedAeadInstance(c CipherFunction, mode AEADMode, inputKey, salt, associatedData []byte) (aead cipher.AEAD, nonce []byte) {
hkdfReader := hkdf.New(sha256.New, inputKey, salt, associatedData)
encryptionKey := make([]byte, c.KeySize())
_, _ = readFull(hkdfReader, encryptionKey)
nonce = make([]byte, mode.IvLength())
// Last 64 bits of nonce are the counter
_, _ = readFull(hkdfReader, nonce[:len(nonce)-8])
blockCipher := c.new(encryptionKey)
aead = mode.new(blockCipher)
return
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"crypto/cipher"
"crypto/sha1"
"crypto/subtle"
"hash"
"io"
"strconv"
"github.com/ProtonMail/go-crypto/openpgp/errors"
)
// seMdcReader wraps an io.Reader with a no-op Close method.
type seMdcReader struct {
in io.Reader
}
func (ser seMdcReader) Read(buf []byte) (int, error) {
return ser.in.Read(buf)
}
func (ser seMdcReader) Close() error {
return nil
}
func (se *SymmetricallyEncrypted) decryptMdc(c CipherFunction, key []byte) (io.ReadCloser, error) {
if !c.IsSupported() {
return nil, errors.UnsupportedError("unsupported cipher: " + strconv.Itoa(int(c)))
}
if len(key) != c.KeySize() {
return nil, errors.InvalidArgumentError("SymmetricallyEncrypted: incorrect key length")
}
if se.prefix == nil {
se.prefix = make([]byte, c.blockSize()+2)
_, err := readFull(se.Contents, se.prefix)
if err != nil {
return nil, err
}
} else if len(se.prefix) != c.blockSize()+2 {
return nil, errors.InvalidArgumentError("can't try ciphers with different block lengths")
}
ocfbResync := OCFBResync
if se.IntegrityProtected {
// MDC packets use a different form of OCFB mode.
ocfbResync = OCFBNoResync
}
s := NewOCFBDecrypter(c.new(key), se.prefix, ocfbResync)
plaintext := cipher.StreamReader{S: s, R: se.Contents}
if se.IntegrityProtected {
// IntegrityProtected packets have an embedded hash that we need to check.
h := sha1.New()
h.Write(se.prefix)
return &seMDCReader{in: plaintext, h: h}, nil
}
// Otherwise, we just need to wrap plaintext so that it's a valid ReadCloser.
return seMdcReader{plaintext}, nil
}
const mdcTrailerSize = 1 /* tag byte */ + 1 /* length byte */ + sha1.Size
// An seMDCReader wraps an io.Reader, maintains a running hash and keeps hold
// of the most recent 22 bytes (mdcTrailerSize). Upon EOF, those bytes form an
// MDC packet containing a hash of the previous Contents which is checked
// against the running hash. See RFC 4880, section 5.13.
type seMDCReader struct {
in io.Reader
h hash.Hash
trailer [mdcTrailerSize]byte
scratch [mdcTrailerSize]byte
trailerUsed int
error bool
eof bool
}
func (ser *seMDCReader) Read(buf []byte) (n int, err error) {
if ser.error {
err = io.ErrUnexpectedEOF
return
}
if ser.eof {
err = io.EOF
return
}
// If we haven't yet filled the trailer buffer then we must do that
// first.
for ser.trailerUsed < mdcTrailerSize {
n, err = ser.in.Read(ser.trailer[ser.trailerUsed:])
ser.trailerUsed += n
if err == io.EOF {
if ser.trailerUsed != mdcTrailerSize {
n = 0
err = io.ErrUnexpectedEOF
ser.error = true
return
}
ser.eof = true
n = 0
return
}
if err != nil {
n = 0
return
}
}
// If it's a short read then we read into a temporary buffer and shift
// the data into the caller's buffer.
if len(buf) <= mdcTrailerSize {
n, err = readFull(ser.in, ser.scratch[:len(buf)])
copy(buf, ser.trailer[:n])
ser.h.Write(buf[:n])
copy(ser.trailer[:], ser.trailer[n:])
copy(ser.trailer[mdcTrailerSize-n:], ser.scratch[:])
if n < len(buf) {
ser.eof = true
err = io.EOF
}
return
}
n, err = ser.in.Read(buf[mdcTrailerSize:])
copy(buf, ser.trailer[:])
ser.h.Write(buf[:n])
copy(ser.trailer[:], buf[n:])
if err == io.EOF {
ser.eof = true
}
return
}
// This is a new-format packet tag byte for a type 19 (Integrity Protected) packet.
const mdcPacketTagByte = byte(0x80) | 0x40 | 19
func (ser *seMDCReader) Close() error {
if ser.error {
return errors.ErrMDCHashMismatch
}
for !ser.eof {
// We haven't seen EOF so we need to read to the end
var buf [1024]byte
_, err := ser.Read(buf[:])
if err == io.EOF {
break
}
if err != nil {
return errors.ErrMDCHashMismatch
}
}
ser.h.Write(ser.trailer[:2])
final := ser.h.Sum(nil)
if subtle.ConstantTimeCompare(final, ser.trailer[2:]) != 1 {
return errors.ErrMDCHashMismatch
}
// The hash already includes the MDC header, but we still check its value
// to confirm encryption correctness
if ser.trailer[0] != mdcPacketTagByte || ser.trailer[1] != sha1.Size {
return errors.ErrMDCHashMismatch
}
return nil
}
// An seMDCWriter writes through to an io.WriteCloser while maintains a running
// hash of the data written. On close, it emits an MDC packet containing the
// running hash.
type seMDCWriter struct {
w io.WriteCloser
h hash.Hash
}
func (w *seMDCWriter) Write(buf []byte) (n int, err error) {
w.h.Write(buf)
return w.w.Write(buf)
}
func (w *seMDCWriter) Close() (err error) {
var buf [mdcTrailerSize]byte
buf[0] = mdcPacketTagByte
buf[1] = sha1.Size
w.h.Write(buf[:2])
digest := w.h.Sum(nil)
copy(buf[2:], digest)
_, err = w.w.Write(buf[:])
if err != nil {
return
}
return w.w.Close()
}
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer.
type noOpCloser struct {
w io.Writer
}
func (c noOpCloser) Write(data []byte) (n int, err error) {
return c.w.Write(data)
}
func (c noOpCloser) Close() error {
return nil
}
func serializeSymmetricallyEncryptedMdc(ciphertext io.WriteCloser, c CipherFunction, key []byte, config *Config) (Contents io.WriteCloser, err error) {
// Disallow old cipher suites
if !c.IsSupported() || c < CipherAES128 {
return nil, errors.InvalidArgumentError("invalid mdc cipher function")
}
if c.KeySize() != len(key) {
return nil, errors.InvalidArgumentError("error in mdc serialization: bad key length")
}
_, err = ciphertext.Write([]byte{symmetricallyEncryptedVersionMdc})
if err != nil {
return
}
block := c.new(key)
blockSize := block.BlockSize()
iv := make([]byte, blockSize)
_, err = io.ReadFull(config.Random(), iv)
if err != nil {
return nil, err
}
s, prefix := NewOCFBEncrypter(block, iv, OCFBNoResync)
_, err = ciphertext.Write(prefix)
if err != nil {
return
}
plaintext := cipher.StreamWriter{S: s, W: ciphertext}
h := sha1.New()
h.Write(iv)
h.Write(iv[blockSize-2:])
Contents = &seMDCWriter{w: plaintext, h: h}
return
}
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"bytes"
"image"
"image/jpeg"
"io"
)
const UserAttrImageSubpacket = 1
// UserAttribute is capable of storing other types of data about a user
// beyond name, email and a text comment. In practice, user attributes are typically used
// to store a signed thumbnail photo JPEG image of the user.
// See RFC 4880, section 5.12.
type UserAttribute struct {
Contents []*OpaqueSubpacket
}
// NewUserAttributePhoto creates a user attribute packet
// containing the given images.
func NewUserAttributePhoto(photos ...image.Image) (uat *UserAttribute, err error) {
uat = new(UserAttribute)
for _, photo := range photos {
var buf bytes.Buffer
// RFC 4880, Section 5.12.1.
data := []byte{
0x10, 0x00, // Little-endian image header length (16 bytes)
0x01, // Image header version 1
0x01, // JPEG
0, 0, 0, 0, // 12 reserved octets, must be all zero.
0, 0, 0, 0,
0, 0, 0, 0}
if _, err = buf.Write(data); err != nil {
return
}
if err = jpeg.Encode(&buf, photo, nil); err != nil {
return
}
lengthBuf := make([]byte, 5)
n := serializeSubpacketLength(lengthBuf, len(buf.Bytes())+1)
lengthBuf = lengthBuf[:n]
uat.Contents = append(uat.Contents, &OpaqueSubpacket{
SubType: UserAttrImageSubpacket,
EncodedLength: lengthBuf,
Contents: buf.Bytes(),
})
}
return
}
// NewUserAttribute creates a new user attribute packet containing the given subpackets.
func NewUserAttribute(contents ...*OpaqueSubpacket) *UserAttribute {
return &UserAttribute{Contents: contents}
}
func (uat *UserAttribute) parse(r io.Reader) (err error) {
// RFC 4880, section 5.13
b, err := io.ReadAll(r)
if err != nil {
return
}
uat.Contents, err = OpaqueSubpackets(b)
return
}
// Serialize marshals the user attribute to w in the form of an OpenPGP packet, including
// header.
func (uat *UserAttribute) Serialize(w io.Writer) (err error) {
var buf bytes.Buffer
for _, sp := range uat.Contents {
err = sp.Serialize(&buf)
if err != nil {
return err
}
}
if err = serializeHeader(w, packetTypeUserAttribute, buf.Len()); err != nil {
return err
}
_, err = w.Write(buf.Bytes())
return
}
// ImageData returns zero or more byte slices, each containing
// JPEG File Interchange Format (JFIF), for each photo in the
// user attribute packet.
func (uat *UserAttribute) ImageData() (imageData [][]byte) {
for _, sp := range uat.Contents {
if sp.SubType == UserAttrImageSubpacket && len(sp.Contents) > 16 {
imageData = append(imageData, sp.Contents[16:])
}
}
return
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package packet
import (
"io"
"strings"
)
// UserId contains text that is intended to represent the name and email
// address of the key holder. See RFC 4880, section 5.11. By convention, this
// takes the form "Full Name (Comment) <email@example.com>"
type UserId struct {
Id string // By convention, this takes the form "Full Name (Comment) <email@example.com>" which is split out in the fields below.
Name, Comment, Email string
}
func hasInvalidCharacters(s string) bool {
for _, c := range s {
switch c {
case '(', ')', '<', '>', 0:
return true
}
}
return false
}
// NewUserId returns a UserId or nil if any of the arguments contain invalid
// characters. The invalid characters are '\x00', '(', ')', '<' and '>'
func NewUserId(name, comment, email string) *UserId {
// RFC 4880 doesn't deal with the structure of userid strings; the
// name, comment and email form is just a convention. However, there's
// no convention about escaping the metacharacters and GPG just refuses
// to create user ids where, say, the name contains a '('. We mirror
// this behaviour.
if hasInvalidCharacters(name) || hasInvalidCharacters(comment) || hasInvalidCharacters(email) {
return nil
}
uid := new(UserId)
uid.Name, uid.Comment, uid.Email = name, comment, email
uid.Id = name
if len(comment) > 0 {
if len(uid.Id) > 0 {
uid.Id += " "
}
uid.Id += "("
uid.Id += comment
uid.Id += ")"
}
if len(email) > 0 {
if len(uid.Id) > 0 {
uid.Id += " "
}
uid.Id += "<"
uid.Id += email
uid.Id += ">"
}
return uid
}
func (uid *UserId) parse(r io.Reader) (err error) {
// RFC 4880, section 5.11
b, err := io.ReadAll(r)
if err != nil {
return
}
uid.Id = string(b)
uid.Name, uid.Comment, uid.Email = parseUserId(uid.Id)
return
}
// Serialize marshals uid to w in the form of an OpenPGP packet, including
// header.
func (uid *UserId) Serialize(w io.Writer) error {
err := serializeHeader(w, packetTypeUserId, len(uid.Id))
if err != nil {
return err
}
_, err = w.Write([]byte(uid.Id))
return err
}
// parseUserId extracts the name, comment and email from a user id string that
// is formatted as "Full Name (Comment) <email@example.com>".
func parseUserId(id string) (name, comment, email string) {
var n, c, e struct {
start, end int
}
var state int
for offset, rune := range id {
switch state {
case 0:
// Entering name
n.start = offset
state = 1
fallthrough
case 1:
// In name
if rune == '(' {
state = 2
n.end = offset
} else if rune == '<' {
state = 5
n.end = offset
}
case 2:
// Entering comment
c.start = offset
state = 3
fallthrough
case 3:
// In comment
if rune == ')' {
state = 4
c.end = offset
}
case 4:
// Between comment and email
if rune == '<' {
state = 5
}
case 5:
// Entering email
e.start = offset
state = 6
fallthrough
case 6:
// In email
if rune == '>' {
state = 7
e.end = offset
}
default:
// After email
}
}
switch state {
case 1:
// ended in the name
n.end = len(id)
case 3:
// ended in comment
c.end = len(id)
case 6:
// ended in email
e.end = len(id)
}
name = strings.TrimSpace(id[n.start:n.end])
comment = strings.TrimSpace(id[c.start:c.end])
email = strings.TrimSpace(id[e.start:e.end])
// RFC 2822 3.4: alternate simple form of a mailbox
if email == "" && strings.ContainsRune(name, '@') {
email = name
name = ""
}
return
}
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package openpgp implements high level operations on OpenPGP messages.
package openpgp // import "github.com/ProtonMail/go-crypto/openpgp"
import (
"crypto"
_ "crypto/sha256"
_ "crypto/sha512"
"hash"
"io"
"strconv"
"github.com/ProtonMail/go-crypto/openpgp/armor"
"github.com/ProtonMail/go-crypto/openpgp/errors"
"github.com/ProtonMail/go-crypto/openpgp/internal/algorithm"
"github.com/ProtonMail/go-crypto/openpgp/packet"
_ "golang.org/x/crypto/sha3"
)
// SignatureType is the armor type for a PGP signature.
var SignatureType = "PGP SIGNATURE"
// readArmored reads an armored block with the given type.
func readArmored(r io.Reader, expectedType string) (body io.Reader, err error) {
block, err := armor.Decode(r)
if err != nil {
return
}
if block.Type != expectedType {
return nil, errors.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type)
}
return block.Body, nil
}
// MessageDetails contains the result of parsing an OpenPGP encrypted and/or
// signed message.
type MessageDetails struct {
IsEncrypted bool // true if the message was encrypted.
EncryptedToKeyIds []uint64 // the list of recipient key ids.
IsSymmetricallyEncrypted bool // true if a passphrase could have decrypted the message.
DecryptedWith Key // the private key used to decrypt the message, if any.
IsSigned bool // true if the message is signed.
SignedByKeyId uint64 // the key id of the signer, if any.
SignedByFingerprint []byte // the key fingerprint of the signer, if any.
SignedBy *Key // the key of the signer, if available.
LiteralData *packet.LiteralData // the metadata of the contents
UnverifiedBody io.Reader // the contents of the message.
// If IsSigned is true and SignedBy is non-zero then the signature will
// be verified as UnverifiedBody is read. The signature cannot be
// checked until the whole of UnverifiedBody is read so UnverifiedBody
// must be consumed until EOF before the data can be trusted. Even if a
// message isn't signed (or the signer is unknown) the data may contain
// an authentication code that is only checked once UnverifiedBody has
// been consumed. Once EOF has been seen, the following fields are
// valid. (An authentication code failure is reported as a
// SignatureError error when reading from UnverifiedBody.)
Signature *packet.Signature // the signature packet itself.
SignatureError error // nil if the signature is good.
UnverifiedSignatures []*packet.Signature // all other unverified signature packets.
decrypted io.ReadCloser
}
// A PromptFunction is used as a callback by functions that may need to decrypt
// a private key, or prompt for a passphrase. It is called with a list of
// acceptable, encrypted private keys and a boolean that indicates whether a
// passphrase is usable. It should either decrypt a private key or return a
// passphrase to try. If the decrypted private key or given passphrase isn't
// correct, the function will be called again, forever. Any error returned will
// be passed up.
type PromptFunction func(keys []Key, symmetric bool) ([]byte, error)
// A keyEnvelopePair is used to store a private key with the envelope that
// contains a symmetric key, encrypted with that key.
type keyEnvelopePair struct {
key Key
encryptedKey *packet.EncryptedKey
}
// ReadMessage parses an OpenPGP message that may be signed and/or encrypted.
// The given KeyRing should contain both public keys (for signature
// verification) and, possibly encrypted, private keys for decrypting.
// If config is nil, sensible defaults will be used.
func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction, config *packet.Config) (md *MessageDetails, err error) {
var p packet.Packet
var symKeys []*packet.SymmetricKeyEncrypted
var pubKeys []keyEnvelopePair
// Integrity protected encrypted packet: SymmetricallyEncrypted or AEADEncrypted
var edp packet.EncryptedDataPacket
packets := packet.NewReader(r)
md = new(MessageDetails)
md.IsEncrypted = true
// The message, if encrypted, starts with a number of packets
// containing an encrypted decryption key. The decryption key is either
// encrypted to a public key, or with a passphrase. This loop
// collects these packets.
ParsePackets:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.SymmetricKeyEncrypted:
// This packet contains the decryption key encrypted with a passphrase.
md.IsSymmetricallyEncrypted = true
symKeys = append(symKeys, p)
case *packet.EncryptedKey:
// This packet contains the decryption key encrypted to a public key.
md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId)
switch p.Algo {
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal, packet.PubKeyAlgoECDH, packet.PubKeyAlgoX25519, packet.PubKeyAlgoX448:
break
default:
continue
}
if keyring != nil {
var keys []Key
if p.KeyId == 0 {
keys = keyring.DecryptionKeys()
} else {
keys = keyring.KeysById(p.KeyId)
}
for _, k := range keys {
pubKeys = append(pubKeys, keyEnvelopePair{k, p})
}
}
case *packet.SymmetricallyEncrypted:
if !p.IntegrityProtected && !config.AllowUnauthenticatedMessages() {
return nil, errors.UnsupportedError("message is not integrity protected")
}
edp = p
break ParsePackets
case *packet.AEADEncrypted:
edp = p
break ParsePackets
case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature:
// This message isn't encrypted.
if len(symKeys) != 0 || len(pubKeys) != 0 {
return nil, errors.StructuralError("key material not followed by encrypted message")
}
packets.Unread(p)
return readSignedMessage(packets, nil, keyring, config)
}
}
var candidates []Key
var decrypted io.ReadCloser
// Now that we have the list of encrypted keys we need to decrypt at
// least one of them or, if we cannot, we need to call the prompt
// function so that it can decrypt a key or give us a passphrase.
FindKey:
for {
// See if any of the keys already have a private key available
candidates = candidates[:0]
candidateFingerprints := make(map[string]bool)
for _, pk := range pubKeys {
if pk.key.PrivateKey == nil {
continue
}
if !pk.key.PrivateKey.Encrypted {
if len(pk.encryptedKey.Key) == 0 {
errDec := pk.encryptedKey.Decrypt(pk.key.PrivateKey, config)
if errDec != nil {
continue
}
}
// Try to decrypt symmetrically encrypted
decrypted, err = edp.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key)
if err != nil && err != errors.ErrKeyIncorrect {
return nil, err
}
if decrypted != nil {
md.DecryptedWith = pk.key
break FindKey
}
} else {
fpr := string(pk.key.PublicKey.Fingerprint[:])
if v := candidateFingerprints[fpr]; v {
continue
}
candidates = append(candidates, pk.key)
candidateFingerprints[fpr] = true
}
}
if len(candidates) == 0 && len(symKeys) == 0 {
return nil, errors.ErrKeyIncorrect
}
if prompt == nil {
return nil, errors.ErrKeyIncorrect
}
passphrase, err := prompt(candidates, len(symKeys) != 0)
if err != nil {
return nil, err
}
// Try the symmetric passphrase first
if len(symKeys) != 0 && passphrase != nil {
for _, s := range symKeys {
key, cipherFunc, err := s.Decrypt(passphrase)
// In v4, on wrong passphrase, session key decryption is very likely to result in an invalid cipherFunc:
// only for < 5% of cases we will proceed to decrypt the data
if err == nil {
decrypted, err = edp.Decrypt(cipherFunc, key)
if err != nil {
return nil, err
}
if decrypted != nil {
break FindKey
}
}
}
}
}
md.decrypted = decrypted
if err := packets.Push(decrypted); err != nil {
return nil, err
}
mdFinal, sensitiveParsingErr := readSignedMessage(packets, md, keyring, config)
if sensitiveParsingErr != nil {
return nil, errors.HandleSensitiveParsingError(sensitiveParsingErr, md.decrypted != nil)
}
return mdFinal, nil
}
// readSignedMessage reads a possibly signed message if mdin is non-zero then
// that structure is updated and returned. Otherwise a fresh MessageDetails is
// used.
func readSignedMessage(packets *packet.Reader, mdin *MessageDetails, keyring KeyRing, config *packet.Config) (md *MessageDetails, err error) {
if mdin == nil {
mdin = new(MessageDetails)
}
md = mdin
var p packet.Packet
var h hash.Hash
var wrappedHash hash.Hash
var prevLast bool
FindLiteralData:
for {
p, err = packets.Next()
if err != nil {
return nil, err
}
switch p := p.(type) {
case *packet.Compressed:
if err := packets.Push(p.Body); err != nil {
return nil, err
}
case *packet.OnePassSignature:
if prevLast {
return nil, errors.UnsupportedError("nested signature packets")
}
if p.IsLast {
prevLast = true
}
h, wrappedHash, err = hashForSignature(p.Hash, p.SigType, p.Salt)
if err != nil {
md.SignatureError = err
}
md.IsSigned = true
if p.Version == 6 {
md.SignedByFingerprint = p.KeyFingerprint
}
md.SignedByKeyId = p.KeyId
if keyring != nil {
keys := keyring.KeysByIdUsage(p.KeyId, packet.KeyFlagSign)
if len(keys) > 0 {
md.SignedBy = &keys[0]
}
}
case *packet.LiteralData:
md.LiteralData = p
break FindLiteralData
}
}
if md.IsSigned && md.SignatureError == nil {
md.UnverifiedBody = &signatureCheckReader{packets, h, wrappedHash, md, config}
} else if md.decrypted != nil {
md.UnverifiedBody = &checkReader{md, false}
} else {
md.UnverifiedBody = md.LiteralData.Body
}
return md, nil
}
func wrapHashForSignature(hashFunc hash.Hash, sigType packet.SignatureType) (hash.Hash, error) {
switch sigType {
case packet.SigTypeBinary:
return hashFunc, nil
case packet.SigTypeText:
return NewCanonicalTextHash(hashFunc), nil
}
return nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
}
// hashForSignature returns a pair of hashes that can be used to verify a
// signature. The signature may specify that the contents of the signed message
// should be preprocessed (i.e. to normalize line endings). Thus this function
// returns two hashes. The second should be used to hash the message itself and
// performs any needed preprocessing.
func hashForSignature(hashFunc crypto.Hash, sigType packet.SignatureType, sigSalt []byte) (hash.Hash, hash.Hash, error) {
if _, ok := algorithm.HashToHashIdWithSha1(hashFunc); !ok {
return nil, nil, errors.UnsupportedError("unsupported hash function")
}
if !hashFunc.Available() {
return nil, nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashFunc)))
}
h := hashFunc.New()
if sigSalt != nil {
h.Write(sigSalt)
}
wrappedHash, err := wrapHashForSignature(h, sigType)
if err != nil {
return nil, nil, err
}
switch sigType {
case packet.SigTypeBinary:
return h, wrappedHash, nil
case packet.SigTypeText:
return h, wrappedHash, nil
}
return nil, nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType)))
}
// checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF
// it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger
// MDC checks.
type checkReader struct {
md *MessageDetails
checked bool
}
func (cr *checkReader) Read(buf []byte) (int, error) {
n, sensitiveParsingError := cr.md.LiteralData.Body.Read(buf)
if sensitiveParsingError == io.EOF {
if cr.checked {
// Only check once
return n, io.EOF
}
mdcErr := cr.md.decrypted.Close()
if mdcErr != nil {
return n, mdcErr
}
cr.checked = true
return n, io.EOF
}
if sensitiveParsingError != nil {
return n, errors.HandleSensitiveParsingError(sensitiveParsingError, true)
}
return n, nil
}
// signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes
// the data as it is read. When it sees an EOF from the underlying io.Reader
// it parses and checks a trailing Signature packet and triggers any MDC checks.
type signatureCheckReader struct {
packets *packet.Reader
h, wrappedHash hash.Hash
md *MessageDetails
config *packet.Config
}
func (scr *signatureCheckReader) Read(buf []byte) (int, error) {
n, sensitiveParsingError := scr.md.LiteralData.Body.Read(buf)
// Hash only if required
if scr.md.SignedBy != nil {
scr.wrappedHash.Write(buf[:n])
}
readsDecryptedData := scr.md.decrypted != nil
if sensitiveParsingError == io.EOF {
var p packet.Packet
var readError error
var sig *packet.Signature
p, readError = scr.packets.Next()
for readError == nil {
var ok bool
if sig, ok = p.(*packet.Signature); ok {
if sig.Version == 5 && (sig.SigType == 0x00 || sig.SigType == 0x01) {
sig.Metadata = scr.md.LiteralData
}
// If signature KeyID matches
if scr.md.SignedBy != nil && *sig.IssuerKeyId == scr.md.SignedByKeyId {
key := scr.md.SignedBy
signatureError := key.PublicKey.VerifySignature(scr.h, sig)
if signatureError == nil {
signatureError = checkMessageSignatureDetails(key, sig, scr.config)
}
scr.md.Signature = sig
scr.md.SignatureError = signatureError
} else {
scr.md.UnverifiedSignatures = append(scr.md.UnverifiedSignatures, sig)
}
}
p, readError = scr.packets.Next()
}
if scr.md.SignedBy != nil && scr.md.Signature == nil {
if scr.md.UnverifiedSignatures == nil {
scr.md.SignatureError = errors.StructuralError("LiteralData not followed by signature")
} else {
scr.md.SignatureError = errors.StructuralError("No matching signature found")
}
}
// The SymmetricallyEncrypted packet, if any, might have an
// unsigned hash of its own. In order to check this we need to
// close that Reader.
if scr.md.decrypted != nil {
if sensitiveParsingError := scr.md.decrypted.Close(); sensitiveParsingError != nil {
return n, errors.HandleSensitiveParsingError(sensitiveParsingError, true)
}
}
return n, io.EOF
}
if sensitiveParsingError != nil {
return n, errors.HandleSensitiveParsingError(sensitiveParsingError, readsDecryptedData)
}
return n, nil
}
// VerifyDetachedSignature takes a signed file and a detached signature and
// returns the signature packet and the entity the signature was signed by,
// if any, and a possible signature verification error.
// If the signer isn't known, ErrUnknownIssuer is returned.
func VerifyDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
return verifyDetachedSignature(keyring, signed, signature, nil, false, config)
}
// VerifyDetachedSignatureAndHash performs the same actions as
// VerifyDetachedSignature and checks that the expected hash functions were used.
func VerifyDetachedSignatureAndHash(keyring KeyRing, signed, signature io.Reader, expectedHashes []crypto.Hash, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
return verifyDetachedSignature(keyring, signed, signature, expectedHashes, true, config)
}
// CheckDetachedSignature takes a signed file and a detached signature and
// returns the entity the signature was signed by, if any, and a possible
// signature verification error. If the signer isn't known,
// ErrUnknownIssuer is returned.
func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (signer *Entity, err error) {
_, signer, err = verifyDetachedSignature(keyring, signed, signature, nil, false, config)
return
}
// CheckDetachedSignatureAndHash performs the same actions as
// CheckDetachedSignature and checks that the expected hash functions were used.
func CheckDetachedSignatureAndHash(keyring KeyRing, signed, signature io.Reader, expectedHashes []crypto.Hash, config *packet.Config) (signer *Entity, err error) {
_, signer, err = verifyDetachedSignature(keyring, signed, signature, expectedHashes, true, config)
return
}
func verifyDetachedSignature(keyring KeyRing, signed, signature io.Reader, expectedHashes []crypto.Hash, checkHashes bool, config *packet.Config) (sig *packet.Signature, signer *Entity, err error) {
var issuerKeyId uint64
var hashFunc crypto.Hash
var sigType packet.SignatureType
var keys []Key
var p packet.Packet
packets := packet.NewReader(signature)
for {
p, err = packets.Next()
if err == io.EOF {
return nil, nil, errors.ErrUnknownIssuer
}
if err != nil {
return nil, nil, err
}
var ok bool
sig, ok = p.(*packet.Signature)
if !ok {
return nil, nil, errors.StructuralError("non signature packet found")
}
if sig.IssuerKeyId == nil {
return nil, nil, errors.StructuralError("signature doesn't have an issuer")
}
issuerKeyId = *sig.IssuerKeyId
hashFunc = sig.Hash
sigType = sig.SigType
if checkHashes {
matchFound := false
// check for hashes
for _, expectedHash := range expectedHashes {
if hashFunc == expectedHash {
matchFound = true
break
}
}
if !matchFound {
return nil, nil, errors.StructuralError("hash algorithm or salt mismatch with cleartext message headers")
}
}
keys = keyring.KeysByIdUsage(issuerKeyId, packet.KeyFlagSign)
if len(keys) > 0 {
break
}
}
if len(keys) == 0 {
panic("unreachable")
}
h, err := sig.PrepareVerify()
if err != nil {
return nil, nil, err
}
wrappedHash, err := wrapHashForSignature(h, sigType)
if err != nil {
return nil, nil, err
}
if _, err := io.Copy(wrappedHash, signed); err != nil && err != io.EOF {
return nil, nil, err
}
for _, key := range keys {
err = key.PublicKey.VerifySignature(h, sig)
if err == nil {
return sig, key.Entity, checkMessageSignatureDetails(&key, sig, config)
}
}
return nil, nil, err
}
// CheckArmoredDetachedSignature performs the same actions as
// CheckDetachedSignature but expects the signature to be armored.
func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader, config *packet.Config) (signer *Entity, err error) {
body, err := readArmored(signature, SignatureType)
if err != nil {
return
}
return CheckDetachedSignature(keyring, signed, body, config)
}
// checkMessageSignatureDetails returns an error if:
// - The signature (or one of the binding signatures mentioned below)
// has a unknown critical notation data subpacket
// - The primary key of the signing entity is revoked
// - The primary identity is revoked
// - The signature is expired
// - The primary key of the signing entity is expired according to the
// primary identity binding signature
//
// ... or, if the signature was signed by a subkey and:
// - The signing subkey is revoked
// - The signing subkey is expired according to the subkey binding signature
// - The signing subkey binding signature is expired
// - The signing subkey cross-signature is expired
//
// NOTE: The order of these checks is important, as the caller may choose to
// ignore ErrSignatureExpired or ErrKeyExpired errors, but should never
// ignore any other errors.
func checkMessageSignatureDetails(key *Key, signature *packet.Signature, config *packet.Config) error {
now := config.Now()
primarySelfSignature, primaryIdentity := key.Entity.PrimarySelfSignature()
signedBySubKey := key.PublicKey != key.Entity.PrimaryKey
sigsToCheck := []*packet.Signature{signature, primarySelfSignature}
if signedBySubKey {
sigsToCheck = append(sigsToCheck, key.SelfSignature, key.SelfSignature.EmbeddedSignature)
}
for _, sig := range sigsToCheck {
for _, notation := range sig.Notations {
if notation.IsCritical && !config.KnownNotation(notation.Name) {
return errors.SignatureError("unknown critical notation: " + notation.Name)
}
}
}
if key.Entity.Revoked(now) || // primary key is revoked
(signedBySubKey && key.Revoked(now)) || // subkey is revoked
(primaryIdentity != nil && primaryIdentity.Revoked(now)) { // primary identity is revoked for v4
return errors.ErrKeyRevoked
}
if key.Entity.PrimaryKey.KeyExpired(primarySelfSignature, now) { // primary key is expired
return errors.ErrKeyExpired
}
if signedBySubKey {
if key.PublicKey.KeyExpired(key.SelfSignature, now) { // subkey is expired
return errors.ErrKeyExpired
}
}
for _, sig := range sigsToCheck {
if sig.SigExpired(now) { // any of the relevant signatures are expired
return errors.ErrSignatureExpired
}
}
return nil
}